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Abstract - Dynamical systems based on distributed elements can 
exhibit complex autonomous behavior. Simultaneous existence of 
separate stable dynamic states (attractors) and the transitions 
between them can model certain forms of epileptic discharge. 
Multi-stable systems have also been proposed for storage and 
retrieval of activation patterns. Here we consider systems with 
alternative types of collective behavior. In these systems emergent 
intermittency allows for autonomous switching between 
turbulent (chaotic) and laminar phases. We demonstrate that the 
distributions of the duration of various phases have distinctive 
statistical properties, different from those in multi-stable systems 
that are driven by stochastic processes. These properties are 
proposed to identify and classify mechanisms that may underlie 
paroxysmal activity as revealed in electrophysiological recordings 
of epileptiform activity. Unlike spontaneous stochastically-driven 
ictal transitions in multi-stable systems, certain features of 
intermittency-based transitions can, in principle, be forecasted 
and perhaps even ameliorated. We show that intermittency in a 
recurrent network does not require plastic connections. At the 
same time, we argue that an autonomous system with modifiable 
connections might require intermittent transition mechanisms in 
order to sustain proper connectivity and function. Networks 
showing intermittency avoid lockups and at the same time 
respond robustly and commensurably to dynamical input 
perturbation. They may thus provide a candidate mechanism for 
pattern recognition and attention recovery in biological and 
artificial systems. 
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I. INTRODUCTION 
 
    Under most conditions, neural-based organisms can attend 
and respond to a range of environmental inputs while avoiding 
permanent lockup of their dynamics. This processing and 
autonomous behavior is done by highly recurrent neural 
systems that display continuously changing dynamics. How 
networks independently change between dynamical states 
(attractors) has been a long-standing question in neural 
network theory [25]. It is often stipulated that either these 
networks are (i) driven between various disjointed attractors 
via perturbations or (ii) a parametric change to the system is 
introduced causing a change in the phase space topology such 
that there is an expansion of an existing basin or the 
introduction of a new attractor via a bifurcation. The 
transitions under both scenarios are highly dependent on 
factors extrinsic to the current dynamics. There is no way for 
the behavior to start, persist or end autonomously without help 
from external parameter tuning or stochastic fluctuations. This 
quandary has its counterpart in our understanding of epileptic 
phenomena. Epilepsy is the prototypical dynamical ailment 
characterized by abrupt and significant shifts in dynamical 
behavior. These changes in the brain are generally considered 
to come about either through (a) a deformation or bifurcations 
of the system, (b) through shifts between preexisting 
attractors, or (c) a combination of the two above scenarios. 
Transitions in and out of seizures are thus thought to occur by 
endogenous or external perturbation that may be as random as 
environmental noise [12], [13], [24]. As such, the issues that 
arise in epilepsy are remarkably similar to the healthy 
behavioral case. For example, if we consider attention as a 
dynamical state in which the system prepares for recognition 
or action, we can posit that the shifts in attentional states might 
be triggered by the environment or even an alternate brain 
structure that modulates alertness. However, here again we 
have to conceive of a perturbation (contentful or noise) that 
will trigger these transitions and subsequent reversal so as to 
bring about a return to the initial condition. But what if the 
mechanisms that trigger and end seizures or attention are 
intrinsic to the very dynamical properties of the system? Here 
we explore the possibility of an intermittency mechanism in a 
recurrent neural network that does not assume a change in the 
system topology nor an external input to trigger changes in 
activity.   
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II. METHODS 
 

A. The Recurrent Neural Network Model 
    We used fully interconnected recurrent neural network 
models including self-feedback (Figure 1). The networks had 
5 units with 25 connections (w0..wj). The connection strength 
between units was represented by a weight that ranged from -3 
to +3. At any given time the total input (Ei) for a unit was the 
weighted sum of the activations of the corresponding input 
units (Sj) such that: 
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    The sum input (Ei) was then fed through a non-linear 
activation function which yielded the unit's new activation 
which is also the output for that unit (Si): 
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All network modeling and analysis software were developed 
in our laboratories using the Labview (National Instruments, 
Austin, Texas, USA) and Matlab (The MathWorks, Natick, 
Massachusetts, USA) programming environments. For a 
review of network modeling see [3], [4])   
 

 
 

Fig. 1. Illustration of recurrent neural network architecture 
 
B. Analysis: Categorization of Network Dynamics via Close 
Returns, Derivatives and Lyapunov Exponents   
    The activity of networks was categorized using a variation 
of the close return algorithm [7], [14], [16], in which we 
compared the last state of all units to the history of all their 
previous states. In fixed-point networks all activation settled to 
a constant value. Periodic limit cycle networks returned 
perfectly to the same value, where the number of iterations 
between repeats was the period of the network. Networks in 
which the activities did not repeat perfectly but nevertheless 
simultaneously returned within 1% of the total range of 
activation (i.e., e = 0.01) were said to have exhibited a close 
return. All other networks were classified as other or 
turbulent. In the intermittent case we further categorized 
various phases by an additional two methods: 
    (i) We examined the mean in the absolute change in activity 
for all units, where change was defined as:  
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    (ii) We assessed the Lyapunov Exponents of the activity 
history [5], [8] - [11], [18]. The novelty of our analytic 
approach is that we computed the spectrum of Lyapunov 

exponents associated with each individual point of the 
system's phase trajectory. Most other researchers assume that 
the attractor of the system is homogeneous, with the same 
geometry in all of its points, and therefore an average value of 
the maximal Lyapunov exponent represents the system's 
stability. In the case of intermittent dynamics such an 
assumption would be erroneous. As our system has two (in 
general there can be more) distinct phases, there is no reason 
to expect self-similarity in the system's attractor. Our 
algorithm for computing local Lyapunov exponents in the 
phase space of the system can be summarized by the formulas:  
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Where eig means the set of eigenvalues of the corresponding 
matrix, || is the Euclidian norm of a vector and ε  and τ are 
constants selected as 0.1 and 1 for this application.  
 

III. RESULTS 
 
A. Tracking down biologically relevant dynamics in a 
population of random networks 
    We began by assessing the activation distribution in a 
population of 1000 networks with random weights (set at -3 to 
3) and random initial conditions (0 to 1). Each network was 
run 1000 iterations and assessed using the close return 
categorization procedure described in the methods. We began 
by eliminated networks with fixed point or periodic limit cycle 
dynamics (46.6 ± 2.08%; [SE%=SQRT((p*(100-p)/n))]). We 
then explored the remaining networks for dynamics that might 
be akin to biological systems (a detailed description of the 
outcome of the categorization of random networks was 
presented in [17] and is being prepared for publication). In this 
paper we consider in detail a subcategory of networks with 
particularly salient dynamics, specifically, those that displayed 
intermittency. Table I in the Appendix provides the weight 
matrix for the construction of such a network.  
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 Fig. 2. Superimposed activity traces for 5 units in a recurrent neural network 
showing intermittent activity. 
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B. Intermittency dynamics in a recurrent neural network  
    Figure 2 shows an example of the activity trace from a 
network with intermittent dynamics. Intermittent network 
activity was characterized by the presence of calm laminar 
periods of low activity interspersed with turbulent phases in 
which activity vacillated considerably in all units.  
 
C. Statistical properties of intermittency dynamics in a 
recurrent neural network 
    This dramatic network-level switch between stable activity 
and states of hyper-excited oscillations was highly evocative 
of recurrent paroxysmal activity seen in certain forms of 
epilepsy. It was also reminiscent of Intermittency Type I, a 
category of behavior exhibited by some dynamical systems 
[18], [21], [23]. One feature of Intermittency Type I is its 
signature distribution of durations for turbulent and laminar 
phases. To examine the distributions we divided the activity 
into the two phases using both (i) the mean of unit activity 
changes and (ii) by assessing the Lyapunov exponent for all 
points in the recording. The first method was a direct measure 
of the local change in activity levels. The Lyapunov exponent 
measured the stability of the system and tendency of the 
system trajectories to diverge or converge at each point in 
time.  
    Figure 3 is a short segment showing the transition of 
activity traces from the laminar phase to turbulence. Also 
shown is the number of Lyapunov exponents greater than zero 
at each iteration. We see that in the beginning of the turbulent 
phase the number of positive exponents rises from 1 (the 
laminar flow) to 2 and higher values. We note that Lyapunov 
exponents are suitable indicators for early stages of the 
transition into the turbulent phase.  
    Figure 4a is the distribution of time lengths of the turbulent 
phases in a network run for 320,000 iterations that included 
4730 phase changes. The turbulent distribution had a sparsely 
populated long tail, with the longest turbulent event recorded 
being 132 time steps. Laminar events (Figure 4b, 4c) had two 
peaks, one at the short durations and the other at long 
intervals. The distribution had a steep cutoff such that a 
laminar duration never exceeded 62 iterations. There was 
broad agreement between the two methods of dividing the 
activity phases. The division also agreed well with the visual 
characteristics. We also examined the relation between the 
duration of laminar and turbulent epochs. Figure 5 (next page) 
is a scatter diagram looking at the duration of each turbulent 
event (y) plotted against the preceding laminar duration (x).   
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Fig. 3. Transition to turbulent phase and the number of positive Lyapunov 

exponents (stars). Activity traces (Si*5) are solid lines. The number of phase-
space points (normalized to 5*N/max(N)) used for computation at each time 

are charted in triangles. Black dots occupy values of either 5 for valid 
calculation or 0 in cases that the H matrix (see Methods) is degenerate. 

 
D. Sensitivity to external stimulus 
    Depending on the direction and amplitude of an external 
stimulus the input could either prolong the length of the 
laminar phase or hasten the return to turbulence. Given that 
the activity was constantly progressing along a flow when in 
the laminar phase, the system was both responsive to 
continuous and periodic stimuli. For example, a periodic input 
of 0.01 presented to unit #2 every 10th iteration reduced 
laminar durations. Increasing the frequency of the external 
stimulus increasingly shortened the laminar phase. 
Nonetheless, certain return to the laminar phase was 
maintained even with constant input of this amplitude. A 
similar input to unit 0 however had the reverse effect. An input 
every 10th iteration prolonged the laminar event. As 
frequency of stimulation was increased the stimulus eventually 
eliminated the turbulent period altogether.  
  
E. Robustness against noise 
     Noise increased the turbulence within the laminar periods, 
thereby interfering with the visual and automated 
differentiation of phases from turbulent epochs. The network's 
intermittent activity structure however was preserved in the 
face of continuous injection of additive noise to all units, at 
amplitudes exceeding 10% of the activation range (uniform 
white noise with ±0.1 amplitude). Although the introduction of 
noise shortened the duration of the laminar phase, no matter 
how much noise was injected the system returned to its 
original behavior once the noise was removed.  
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Fig 4. Event duration histograms (a) Distribution of turbulent durations (b) Distribution of laminar inter-turbulent durations 
(c) Zoom of laminar events histogram highlighting the U-shaped features of Intermittency Type I distributions. 
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Fig. 5. Scatter diagram of successive event durations. Y-axis is duration of 

turbulent epoch. X-axis indicates duration of preceding laminar event. 
 

IV. DISCUSSION 
 
1. Types of Epilepsy and a Potentially New Category: 
    Following Lopes da Silva et al [12], [13], [24], the 
introduction outlined three general routes to epilepsy. Here we 
demonstrate the possibility of a fourth, autonomous, route. 
The recurrent neural network model presented here exhibited 
transitions between dynamical phases resembling the changes 
between ictal and interictal patterns seen in biological systems. 
By using either the mean of the changes of these activations or 
their Lyapunov exponents we were able to differentiate the 
observed dynamics into two well-defined phases that matched 
the observed turbulent and laminar patterns.  
 
2. Intermittency as a Mechanism for Autonomous Transitions 
in Epilepsy and Behavior  
    Critical transitions in dynamical states are observed in 
pathological cases (epilepsy) but are also an important feature 
of healthy cognitive processes including attention. These 
findings show that even a simple recurrent neural network can 
autonomously generate the transitions between dynamics 
required for this type of intermittent behavior. The ability to 
autonomously switch between phases without intervention is 
important for understanding how dynamical transitions take 
place in biological systems. The possibility that such 
intermittency mechanisms could be instantiated in the brain 
suggests: (i) that there is a viable alternative to the conception 
of deformation theories and separate attractor scenarios and 
(ii) analysis techniques that attempt to characterize behavior 
over extended intervals without regard to the multiplicity of 
phases could fail to properly capture the underlying dynamics.  
 
3. Autonomy from the Environment 
    The transitional features of this system are important in 
accounting for two basic and competing requirements of a 
dynamical system that must interact with the environment 
while remaining independent: (i) the system has to be 
responsive to input, and (ii) it has to avoid having its dynamics 

locked following exposure to the environmental input. A 
dramatic example of how neural ensembles can be locked by 
environmental perturbations is the phenomenon of 
photosensitive epilepsy in which epileptic discharges are 
induced by a visual stimulus. In these cases a trigger from the 
environment alters the brain's dynamics and once triggered, 
the discharge can persist long after the stimulus is removed. In 
contrast, in the normal perceptual case, a stimulus will draw 
the system's attention but the healthy organism is able to react 
in a time delimited manner so that it can attend to other events 
and avoid being locked into the single attentional state. The 
collective behavior of the recurrent neural network units 
allowed for just this sort of autonomous transition between 
dynamical phases and consequent decoupling from the 
environment.  
 
4. Heterogeneous Dynamics and their Topology   
    The manner in which these transitions take place is perhaps 
best understood by considering the heterogeneous topology of 
the trajectory. Figure 6 is a reconstruction of the system. It 
shows the trajectory of the network embedded in a 3-
dimensional space over 10,000 iterations by plotting the 
activity of 3 units, each on an axis. The activity plot clearly 
shows the structure of the laminar flow as a narrow curved 
tube passing through a 5-dimensional hypercube of which 3 
dimensions are shown. When the activity is in the vicinity of 
the entrance to the flow it is attracted inward and proceeds 
through the curved structure until it exits at a lower point 
along the flow. The dashed arrow indicates the direction of the 
flow. Upon exiting, the turbulent activity commences. The 
turbulent activity is similar to billiard ball type chaos bouncing 
in a 5-dimensional hypercube [1] until it once again finds the 
entrance to the tube. The activity thus does not have the 
homogenous properties associated with most dynamical 
systems. The move from the flow to a chaotic state does not 
require an outside perturbation or deformation of the system.   

 
 

Fig. 6. Topology of intermittent neural network activities. The state of units 
1,2 and 4 indicate position in 3-dimensional activation space. 
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5. Distribution and Predictability of Durations in Intermittent 
Network Activity  
    The maximal length of the laminar phase is clearly 
illustrated in the Figure 4 distributions histogram. Knowing 
this limit and the shape of the distribution has predictive value. 
As there is a buildup-like phenomena taking place, the 
duration to the next turbulent event is statistically predictable 
and bounded. With each time step from the past event there is 
a known probability that precisely follows the laminar 
distribution. In the interval immediately following an exit 
from discharge the probability of entry back into a turbulent 
event is relatively high but then drops as the system makes it 
to the mid-section of the distribution. As time progresses the 
discharge becomes inevitable with an interval between such 
events never exceeding 62 iterations.  
    These predictable properties follow directly from the 
topology. The laminar flow's finite length reflects the fact that 
there is a maximal duration for the laminar phase. Unlike 
multi-stable systems and systems undergoing deformations, 
prediction in this case is not entirely dependent on an external, 
possibly random or unknowable factor. The left segment in the 
distribution illustrated in Figure 4 marks the proclivity to 
reenter a turbulent phase immediately upon exit, the right-
hand rise marks the maximal inter-paroxysmal intermission 
period. In other words, possible evidence for an intermittency 
mechanism of this sort could be obtained by searching 
epileptiform recordings for inter-paroxysmal duration 
distribution similar to the one described.  
    Figure 5 indicates that the longest turbulent periods (>90 
iterations) might only follow the longest laminar (>30 
periods). However, due to the rarity of long turbulent events 
(only 10 such occurrences out of 4730 events) and the bias 
toward long laminars it is difficult to establish the significance 
of this correlation even given the large sample size (320,000 
iterations). The relation could be a peculiarity of this particular 
data set and would certainly be difficult to recognize in a 
biological counterpart, where it might take years to reliably 
accumulate a comparable amount of data.     
   As of late, there has been much debate as to whether 
seizures can be predicted. This model suggests that it may 
very much depend on the mechanisms underlying the 
progression. If certain seizures turn out to follow a Type I 
intermittency distribution then there is hope for distinct kinds 
of prediction such as time to upcoming seizure. Although the 
relationship between the laminar epoch and the length of the 
following turbulent phase were weak in this particular case, it 
is also conceivable that a situation exists with a strong 
coupling between two phases. Specifically, the topology of the 
laminar could include a well-defined short trajectory with a 
return exit close to the entrance to the flow. If such an 
intermittent topology were found it could shed light on two 
phenomena: (i) in the realm of epilepsy research, the idea that 
short ictal events actually have a protective effect by averting 
long turbulent events or full-scale seizure; (ii) in attention 
studies, to help explain the relation between the delay 
following stimulus presentation and the attentional readiness 
of a system. If the time past since the last reaction (here 

conceived of as a turbulent event) is short, then the system will 
only repeat that state for a short time. However, if there has 
been a lengthy delay (long laminar duration) since the last 
presentation the system's reaction it is more likely to be 
extended. These behaviors could also be changed with the 
modification of the topology via learning. The specifics would 
depend on the topology, and that such a structure could exist, 
remains to be shown. 
 
6. Sensitivity to stimulus frequency and intensity  
    The proportional effects of the stimulus seen in this study 
are simply related to their ability to interfere with the flow 
along the laminar. The stronger, longer or more frequent the 
intervention, the better chance it has of pushing the system out 
of the laminar phase. A stimulus that hastens the trajectory 
through the flow or is orthogonal to the flow will precipitate 
and aggravate the turbulent epoch. Conversely, a stimulus that 
biases the activity in the direction of the entrance to the flow 
will delay and might even stop the turbulence.  
 
7. Ameliorating Seizures 
    The topology of the system and the attendant ability of the 
model to respond differentially to a stimulus depending on its 
intensity, frequency and duration helps elucidate how 
stimulation might delay, stop or even hasten a seizure in an 
intermittency-based system. If we can reconstruct the 
properties of the laminar phase it might become possible to 
perturb the system so as to increase its likelihood of remaining 
out of the paroxysmal state.  
 
8. Modulation of attention 
    From an attention perspective these properties demonstrate 
that intermittency allows for a paradigm in which stimulus 
intensity or frequency can proportionally affect response. 
These are important features for attention systems in which the 
responses should be graded in relation to the salience, duration 
and amplitude of the relevant environmental or intrinsic 
triggers (whether they signal danger or opportunity). Although 
the possibility still exists that at extremes stimuli will saturate 
the activity and the system might remain locked in one of the 
two phases indefinitely, the experiment in which we applied 
noise to the network demonstrated that the system can still 
recuperate and return to the initial intermittent behavior once 
the extreme stimulus is removed.  
 
9. Attention and context 
    The observation that these networks can respond 
commensurably to stimulus intensity, duration and frequency 
is also an important feature for systems in which processing 
occurs in parallel. These properties allow for neural elements 
from a distal location in the brain to have a graded influence 
on the dynamics of local processing without the local 
processing being locked down by the incoming dynamics. 
Such distributed modulation is critical both in allowing for 
context-sensitive attentional processing and avoiding lock-ups 
due to synchronization.    
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10. Endogenous Response Variability 
    The fact that the system displays a sensitivity to initial 
conditions might explain some of the difficulties of predicting 
seizures. However, in terms of behavioral reactions a certain 
amount of unpredictability might actually provide an organism 
with an advantageous response. The endogenous variability 
guarantees that the system will respond in a proportionally 
beneficial manner without the liabilities of excessive repetition 
and over-predictability.      
 
11. Attention Recovery, the Homunculus Problem and 
Autonomy 
    Cognitive models often conceive of the tracking and release 
of attention as being moderated by an external trigger. 
Limiting the factors that can change attention to perturbation 
events is neither conceptually helpful nor practically 
achievable. A central difficulty with the neuroscience 
literature on attention, in particular, is that it tends to avoid 
addressing the question of how a local ensemble's dynamics 
might shift independently of input from a stimulus or another 
brain structure (for a recent review of the attention literature 
see [22]). Models usually focus on an already partially 
preprocessed signal or the addition of an external cue. That is, 
the response starts and stops in direct relation to the activity of 
another brain location or the stimulus. The problem is thus 
only pushed back leading to an infinite regress. This 
attribution of the attention mechanism to an as-yet-to-be-
identified location is a traditional homunculus fallacy (see 
Dennett's Cartesian theatre [2]). 
    The analogous error in dynamical research is to pre-assign 
to the incoming sensory information the dynamics that will 
drive the system, such that the workings of the target neural 
ensemble are, at best, a simple modulation of this signal. This 
approach leaves the dynamical processing and decoupling 
questions forever unanswered. How are different dynamical 
regimes initiated autonomously in preparation for the signal? 
How does the location avoid lock-up once the signal is 
present? The intermittency model can begin to account for 
attention recovery by building the dynamical transitions into 
the collective behavior rather than appealing to external 
salvation.   

 
12. Recurrent Network Attention Does Not Require Plasticity 
thereby Ensuring Rapidity of Response 
    An extremely important, possibly counter-intuitive element 
to the intermittency model is that it does not require plasticity. 
All transitions in the activity of our model occurred in the 
absence of changes to the network structure. This may be 
counter-intuitive given that neuroscientists mostly conceive of 
a change in behavior as being underwritten by an alteration in 
either the intrinsic cell properties or the structural features of 
the network; what else could explain the fact that an identical 
stimulus could affect the systems differently in two successive 
exposures? As we have shown, the system is indeed in a 
different state, but this change in state is not due to an 
alteration in its units' intrinsic properties or the network's 
connectivity properties. Change in activity alone alters the 

system's location in activity space, and thus is sufficient to 
generate a differentiated response. Moreover, assuming that 
most plastic events are slower than activity, the intermittency 
model offers an exceedingly quick activity-based method for 
responding to a stimulus such that the network need not wait 
for alterations to its connectivity or intrinsic cell properties to 
modulate its output. This opens up the possibility for laminar 
flow geometry to act as a preprogrammed recognition or 
motor response that can be triggered by an outside event while 
still ensuring a finite response.  
 
13. Plasticity May Require Intermittency  
    Although an intermittency mechanism may not require 
plasticity there is good reason to believe that the same 
dynamical problems that affect activity may also affect 
synaptic dynamics. As different as they may seem, the same 
dynamical issues apply both to non-plastic and plastic 
systems. (The one difference being that for systems of 
comparable size the plastic system has considerably more 
degrees of freedom.) Given that the need to avoid lock-ups 
extends to plasticity, intermittency may offer an autonomous 
means for transition between learning phases and safeguard 
against runaway synaptic dynamics.  Conversely, there needs 
to be an autonomous mechanism that can periodically initiate 
plasticity even after it has settled. In general, all the 
advantages of intermittency as applied thus far to activity can 
be extended to plasticity. The extension of intermittency 
principles to plasticity may prove to be the most interesting 
application of all, suggesting new ways of looking at 
computational system learning and the dynamics of long-term 
representation [6], [20].  
 
14. Clinical Implications: Prediction, Amelioration and 
Reversal of Susceptibility to Paroxysms 
    It is important to note that there are other types of 
intermittency that have very different distribution and features 
from the Type I intermittency examined thus far. In particular 
Type III intermittency has been implicated in epilepsy [19]. 
The topological properties of the laminar flow studied here 
imply that if intermittency-based mechanisms are responsible 
for certain epileptiform phenomena then aspects of the 
dynamical behavior could in principle be predicted. The fact 
that intermittent systems are responsive to stimuli in a way 
that is proportional to frequency and intensity without 
necessarily being locked by the input dynamics supports the 
idea that we may be able to go beyond prediction and into the 
realm of amelioration by stimulating paroxysmal ensembles 
electrically or chemically. Most interesting perhaps is the idea 
that we may actually be able to reshape the topology of the 
system. That is, even small changes in the weights, or 
connectivity, of a network might directly affect the system's 
response characteristics without requiring continuous 
stimulation. This possibility, though highly speculative, offers 
at least a conceptual route to the permanent reversal of the 
epileptic condition in the biological system.  
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15. Future Directions, Provisos and Conclusions:  
    The model in this paper offers a new way to explain some 
of the dynamical transitions seen in epilepsy. We also explain 
why these autonomous transitions might be important in 
elucidating and modeling the dynamics of healthy phenomena 
such as attention. There are many other biological phenomena 
which are characterized by largely autonomous dynamical 
shifts. Sleep is perhaps the most interesting candidate for 
exploration given its direct relation to attention. The presence 
of these dynamics now needs to be searched for in 
epileptiform data. Similarly, the applicability of intermittency 
to attention requires examination of healthy data and modeling 
in cybernetic systems. We need to study various forms of 
plasticity and see what role intermittency might play in long-
term learning. It will also be important to establish the effects 
of a range of additive and multiplicative noise factors on the 
distribution of laminar and turbulent epochs. The impact on 
general network theory should also be considered (for a recent 
review of the subject see [15]).  
    Caution however must be taken in interpreting the 
biological correlates of the laminar and turbulent phases and 
their distribution. Though conceived here as the quiescent 
period, the laminar phase could represent a synchronous 
epileptiform state. With respect to attention, either phase could 
represent the waiting state or the execution of a preset 
response. Whatever the physical interpretation might be, it is 
the ability of intermittency to explain autonomous switching 
between dynamical regimes that recommends it for further 
investigation as a mechanism for elucidating the dynamical 
features of epilepsy and attention recovery.  
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APPENDIX 

 
TABLE 1 

WEIGHT MATRIX FOR AN INTERMITTENT NETWORK 
    

 From Unit 
To unit 0 1 2 3 4 

0 1.418 2.750 -1.829 1.878 -2.537 
1 -2.225 -1.086 -1.707 2.509 2.212 
2 -1.854 -0.038 2.134 -1.737 -1.708 
3 1.322 2.718 -2.349 -2.491 2.703 
4 -2.404 1.902 0.603 0.962 -0.347 
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