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Abstract

The problem of demarcating neural network space is formidable. A simple fully connected recurrent network of five units (binary
activations, synaptic weight resolution of 10) has 3.2 * 10?® possible initial states. The problem increases drastically with scaling. Here
we consider three complementary approaches to help direct the exploration to distinguish epileptic from healthy networks. {1} First,
we perform a gross mapping of the space of five-unit continuous recurrent networks using randomized weights and initial activations.
The majority of weight patterns (>70%) were found to result in neural assemblies exhibiting periodic limit-cycle oscillatory behavior. {2}
Next we examine the activation space of non-periodic networks demonstrating that the emergence of paroxysmal activity does not
require changes in connectivity. {3} The next challenge is to focus the search of network space to identify networks with more complex
dynamics. Here we rely on a major available indicator critical to clinical assessment but largely ignored by epilepsy modelers, namely:
behavioral states. To this end, we connected the above network layout to an external robot in which interactive states were evolved. The
first random generation showed a distribution in line with approach {1}. That is, the predominate phenotypes were fixed-point or oscil-
latory with seizure-like motor output. As evolution progressed the profile changed markedly. Within 20 generations the entire population
was able to navigate a simple environment with all individuals exhibiting multiply-stable behaviors with no cases of default locked limit-
cycle oscillatory motor behavior. The resultant population may thus afford us a view of the architectural principles demarcating healthy
biological networks from the pathological. The approach has an advantage over other epilepsy modeling techniques in providing a way
to clarify whether observed dynamics or suggested therapies are pointing to computational viability or dead space.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction
1.1. Networks and behavior

- In framing the relation of network activity to behavior
Corresponding author. Address: University of Toronto Epilepsy there are several important approaches and conceptual

Research Program, Institute of Medical Science, Medical Sciences breakthroughs on which a theoretical neuroscientist might

Building, Room 4306, University of Toronto, Toronto, Ont., Canada o . .

MSS 1AS8. Tel.: +1 416 978 6381: fax: +1 416 971 2433, depend. In The Organization of Behavior, Hebb forwarded

E-mail address: ohayon@chass.utoronto.ca (E.L. Ohayon). mechanisms by which persistent activity and use-dependent

0928-4257/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jphysparis.2005.09.018


mailto:ohayon@chass.utoronto.ca

508 E.L. Ohayon et al. | Journal of Physiology - Paris 98 (2004) 507-529

modifications could underwrite memory and behavior [22].
The connectionist modeling movement formalized algo-
rithms that demonstrated ways in which networks could
perform a range of categorization and behavioral tasks
through algorithmic alterations in connection weights
[23,60] However, recurrence was a central theme for Hebb
and is undoubtedly a prominent feature of brain activity
and whereas Hebb envisioned reverberating circuits these
initial connectionist models were predominantly feed for-
ward. Even those models that astutely incorporated recur-
rent connections and feedback between nonlinear units,
nonetheless relied on equilibrium, with activity settling at
fixed points, as a means of representation [24,28]. Certainly
the importance of dynamics in physiology, network theory
and self-organization has long been recognized [16,18,
55,78]. Significant progress has been made in incorporating
the dynamics of networks into connectionism, neuroscience
and the cognitive sciences [14,54,88]. Nonetheless, the fun-
damental principles relating network structure to the
dynamics of neural activity remain elusive. How these
architectural principles and the emergent activity translate
to behavior is even more confounding.

1.2. Networks and dynamics

The challenge then is to relate the structure of networks
to the dynamics they can support. A recent indication that
some of the most basic questions regarding network archi-
tecture have yet to be answered is the extraordinary
increase in attention to general network theory [1,3,44,
83]. Grounded in graph theory, these studies have brought
to light just how fundamental network connectivity is to
the functioning of so many of the systems that surround
us. Although some of this work has considered dynamics
[68,71] it is more often the case that network connectivity
and network behavior are conflated. Most studies to date
relate to the statistics of network linking and the dynamics
of structure change rather than the dynamics of network
activity. It is generally assumed that activity patterns will
follow apparent network architecture and that current
measures of structure will automatically inform us about
functionality. Yet, the complexity of the patterns of activity
carried in neural networks and the behaviors they support
may stand in a non-trivial relation to the underlying
network architecture. As will be demonstrated in this
paper, complex network dynamics can occur in even small
networks long before issues of large-scale connectivity
arise.

The fact that the connection between activity, architec-
ture and behavioral space remains obscure is not altogether
surprising. Characterizing an ensemble’s behavior and pre-
dicting its dynamical repertoire from structure is particu-
larly difficult if not analytically intractable. In theoretical
neuroscience analytical approaches to non-linear neural
networks are often restricted to two cells [15]. Numerical
approaches can overcome some limitations as seen in their
application to systems like cellular automata [34,87]. But

even these cases are often single-dimension and highly
discretized systems that can take years to fully explore.
Moreover, both cellular automata and recent mainstream
network theorists tend to work with binary connectivity.
When continuous connectivity is considered, as is the case
of neural systems, a brute numerical approach becomes
even less feasible given present computational resources.
For example, a simple recurrent network of five intercon-
nected units has 3.2 * 10%° possible initial states.' Iterating
even such a simple model until all initial states are tested
(1 ms per test) for all possible networks would take approx-
imately 3.2 % 10% s, or several million times the current
estimates of the age of the universe (10-15 billion years).
These estimates are not comforting given that most neural
models are much more complicated and that having a gen-
eral sense of the network architecture space and its relation
to activity is likely essential to an understanding of the
behavior of neural networks.

The dynamics of neural activity and the changing of
relations of weights in complex networks underlie some
of the most fundamental questions we need to answer if
we are to understand activity in the nervous system with
respect to perception, learning and autonomous behavior.
For example: What is the likelihood that a network’s activ-
ity will die out and settle on a fixed point? How likely or
prone is a network to enter a limit cycle and become locked
into periodicity? What is the full taxonomy of complex net-
work behaviors and where are the various categories placed
in the space of all possible networks? What is the connec-
tion between network structure, network dynamics, and
an organism’s interaction with the world? What role do
these various types of dynamics play in physiological
systems?

1.3. Dynamics and epilepsy

Answers to these basic questions may also underlie some
of the most intractable clinical problems facing neurosci-
ence. When network dynamics go wrong the effects can
be devastating. Epilepsy is perhaps the paradigmatic case
in which changes in network dynamics can have acute
effects on a gamut of cognitive and behavioral phenomena.
A disorder that is estimated to affect 1-3% of the popula-
tion (varying by social and geographic position), epilepsy
can be brought on by perceptual triggers, physiological
stimuli, stress, physical trauma, pharmacological and
genetic factors. Approximately 60-70% of cases are idio-

! Calculation of number of possible network evolutions for a five unit
network (n=5): Network space: there are 25 synapses (n°). Assuming a
synaptic weight resolution (w) of 10 there are 10* possible network
configurations (an); Activation space: Assuming even binary activation
each network can have 32 (2") possible activation combinations. The
number of network and activation combinations gives us a total of
3.2 % 10% possible initial states. Behavioral space: Assuming the dynamics
of a network can be assessed within 100 iterations, the total number of
computational iterations needed to assess all the possible networks will be
3.2 10%,
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pathic or cryptogenic, that is to say having no known or
identified cause, and an estimated 20% of cases are cur-
rently intractable [8,21,65]. Yet despite a range of symp-
toms, causes and levels of responsiveness to treatment, the
unifying, almost definitional, factor seems to be changes
in neural dynamics.

Recent reviews by Lopes da Silva et al. [38,39] provide
an overview of epilepsy as a dynamical disease and itemize
several ways in which the transitions might occur including
bifurcations in the system dynamics and switching between
preexisting attractors [72]. To answer how phenomena such
as hypersynchronization and broad fluctuations in activity
come about we need to understand the relation of these
dynamical patterns to the underlying neural structures. In
recognizing the connection with dynamics it follows that
epilepsy may also provide a general portal into the dynam-
ics of the brain and the mechanism underlying the non-sei-
zure conditions, that is behavior.

1.4. Epilepsy and networks

Much of the search for fundamental mechanisms of epi-
lepsy assumes that the culprits are pathological cell proper-
ties (including local synaptic properties) or an imbalance in
cell types [11,45,67]. An alternative to this cell-centric “epi-
leptic neuron hypothesis” is the “epileptic aggregate™ the-
ory. The possibility thus arises that networks with normal
cells might exhibit epileptic phenomena due to malformed
connectivity. Outstanding questions relating to the mecha-
nisms that bring about these massive dynamical changes in
epilepsy are analogous, if not identical, to those posed ear-
lier about networks in general. The intractability of the net-
work activity question and epilepsy are strongly related
and both depend on linking architecture and activity.
Whether in graph theory or clinical epilepsy, the architec-
ture, dynamics and emergent functional behavior of net-
works are all closely interwoven.

1.5. Embodied modeling

The connection between network structure, activity
dynamics and behavior is not always obvious. Although
many models incorporate extensive physiological detail it
is difficult to know whether they capture the most general
system dynamics or are just a particular correlation to
observed brain dynamics that the field or given experi-
menter find interesting. For example, are occurrences of
synchrony computationally necessary for behavior or sim-
ply a correlated transition? To this end, it is a major imped-
iment that, to date, major oscillatory ensemble models have
been both figuratively and literally disconnected from the
world [74]. Recently there has been a growing recognition
by a range of modelers for the need to relate neural dynam-
ics to behavior and the value of doing so in embodied
modeling. Important progress is now being made in
neuroscience-related studies of robots (for an overview
see [46,61,84]). The interrelation of dynamical and behav-

ioral indicators of seizures suggests that such models might
similarly help relate inquiries into the fundamental aspects
of system dynamics to epilepsy. Given this connection
between embodiment, behavior and seizures it is not a
coincidence that the earliest pioneers of cybernetics and
robots (hereafter termed autonomous agents) explicitly
had interest in neuroscience and epilepsy [80-82,86]. Mak-
ing the connection between activity and embodied behavior
is essential to understanding epilepsy. It is important to
remember that as much as diagnosis of epilepsy relies on
biophysical measures such as electroencephalograms and
recordings from implanted electrodes, ultimately it is
behavioral indicators that are at the heart of the clinical
diagnosis and as such are the canonical test for any model
or cure.

1.6. Charting network space

The purpose of this paper is to explore techniques for
addressing the relation of recurrent architectures to neural
activity and ultimately behavior. In particular, we focus on
relating structure to a taxonomy of network activity pat-
terns in standalone and embodiment recurrent network
models. In so doing, we ask how regions of network con-
nectivity space might be charted and related to both
healthy behavior and pathological phenomena such as epi-
lepsy. This is the first work in embodied network modeling
of epilepsy and more generally the escape from pathology
in autonomous agents.

2. Methods
2.1. Recurrent neural network

Both the standalone and embodied modeling described
in this paper used fully interconnected recurrent neural net-
works including unit self-feedback (see Fig. 1, dotted box).
The recurrent networks were composed of five units, with
each unit receiving five input connections (wy...,w;) for a
total of 25 network connections. The connection strength
between units was represented by a weight that ranges from
—3 to +3 with negative values representing inhibition. The
total input (E;) for a unit is the weighted sum of the activa-
tions of the corresponding afferent units (S;) such that:

Ei =Y wyS (1)
7

The sum input (E;) is then fed through a non-linear acti-
vation function which yields the new activation value
(S;) for that unit (For review see: [5,15,23,46,60]). A unit’s
activation is also the output of the unit for the purpose of
the next iteration. We tested both hyperbolic tangent (sig-
moid) and radial basis functions (RBF) as activation
functions:

S(E;) = e(—Ei)2

radial basis activation function (2.1)
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S(E;) = tanh(E;) sigmoid activation function (2.2)
In the first set of experiments we generated networks with
all connections randomized (weight values ranging from
—3 to 3), random initial unit activity levels (—1 to 1 for
the sigmoid networks; 0—1 for RBF) and then iterated net-

work activity for 1000 time steps.
2.2. Naive Hebbian plasticity

We also performed some preliminary studies of the
effects of plasticity on dynamics using a simple Hebbian
[22] rule:
wy = wy; + ((S:S;)w;7) naive Hebbian plasticity (2.3)
For these plastic networks, the change in weights is a sim-
ple function of the activity of the two connected cells mod-
ulated by a rate factor (r). Network weights were left either
to grow indefinitely or constrained within bounds. It is
important to note that in the sections of this study con-
cerned with the categorization of random networks, no
plasticity was involved and weights were held steady
throughout the run. In the embodied modeling portion
weights were changed through a genetic algorithm but held
steady for any particular individual.

2.3. Categorization of network dynamics

The activity of networks was categorized using a varia-
tion of the close returns algorithm [42,10,32,47]. In the cur-
rent implementation the final state of all units in the
network was compared to every other state in the evolution
to see if the value returned within a given range. This win-
dow (&) was set as a fraction of the difference between max-
imal and minimal possible activation values (e.g., 1% of
[Max — Min|). If all units in a network returned precisely
to the same state in two successive iterations (i.e., absolute
difference for all units = 0) then the network had settled on
a “fixed point” and would remain frozen in that state. If all
units simultaneously returned to the same states in itera-
tions separated by an interval p then the network would
oscillate endlessly and was said to settle on a “limit cycle”
with period p and frequency f=(1/p). An occurrence in
which the absolute difference in activation values
(|Eifina) — Ei|) dropped below the window threshold (&)
but not to 0 was termed a close return. For those cases
in which activations did not return precisely to the same
state but nevertheless saw all units simultaneously achieve
a return within ¢ of the final iteration values, the network
was categorized as exhibiting ‘“‘close returns” (unstable
periodic orbits). These “close return” networks were char-
acterized by repetitive but not precisely repeating oscilla-
tions. Finally, networks that never returned within the
window were marked as “unspecified” or “turbulent” and
were characterized by behavior that generally appeared
random.

2.4. Embodied modeling

For the embodied modeling portion of the experiment
we connected the recurrent networks to a mobile robot
and evolved network structures that could perform a sim-
ple obstacle avoidance task in the world.

2.4.1. Autonomous agent network architecture

The network portion of the model was analogous to a
central nervous system (CNS) and the attached robot the
body. The network had three layers including (i) an input
layer comprising of eight feed-forward units each corre-
sponding to a sensory transducer, (ii) a computational
recurrent layer with five fully recurrent computational
units and (iii) a motor output layer consisting of two motor
output units. Each recurrent unit thus received eight sen-
sory inputs in addition to the five recurrent inputs
described earlier in the case of standalone networks. Activ-
ity in the network responded in real-time to the sensory
input and recurrent activity. Output values controlled
robot wheel rotation direction and speed. Fig. 1 is an illus-
tration of the network and main robot body features.

2.4.2. Robot chassis and sensory transducers

For the robot body we used a modified version of a
commercial miniature robot (Descartes model, Diversified
Enterprises, Santa Barbara, CA, USA) equipped with
two motors that rotated two independent wheels in the
clockwise and counter-clockwise directions. The robot
body was round and wheel orientation was fixed. Turns
were accomplished by asymmetric rotation speeds. The
robot was tethered to a personal computer running the
recurrent neural network program. All network processing
was done on the attached personal computer. A processor
on board the robot was used solely for sensory and motor
communication. The incoming sensory information and
outgoing wheel instructions were relayed via a serial port.
The communication and network modeling software were
developed in our lab using Labview (National Instruments,
Austin, TX, USA). Wheel speed update and sensory read-
ings were performed in the same cycle. Network activity
was computed online with an average interface cycle
time—including sensory input, neural network computa-
tion and command output—of approximately 80 ms
(~12.5 Hz). The limiting factor in the update was the serial
communication.

Sensory information was relayed via eight transducers
(right side of Fig. 1) including: two bumper sensors (LB,
RB), four cadmium sulfide photocell sensors (PS1-PS4),
and infrared encoders to monitor wheel rotation (RW,
LW). The bumpers were located on each side of the unit
and registered binary tactile perception. Front contact
was indicated when the left and right were simultaneously
triggered. There was a small tactile “‘blind-spot” in the rear.
The four photosensitive detectors were located on the
front, rear, right front and left-front orientations. Four
light emitting diodes (LEDs) matched the photosensitive
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Fig. 1. Autonomous agent network and body diagrams. The left side of the figure is a schematic of the neural network portion of the autonomous agent
model run on the computer. The right side of the figure is a schematic of the robot body placed in the world. The central recurrent layer of the network,
indicated by the dotted box, corresponds to the network used in the standalone models of this paper. The sensory transducers on the body include right
and left bumper sensors (RB; LB), four photoreceptors (PS1-PS4) and wheel rotational encoders (RW; LW). The area pointing down with the highest
density of photoreceptors and where the bumpers meet is considered the front. The eight sensory transducers relay information to the network’s
corresponding sensory inputs. These are fully connected to the recurrent layer. The five recurrent units feed back onto each other as well as being fully
connected to two motor output units. Unit activity is determined by taking each input to the unit and multiplying it by the respective weight. This weighted
sum is then fed through a sigmoidal function which in turn yields the activation value and output for that unit. The motor output units set the speed for the
two independently moving wheels. Network output was a real-time response to sensory input and internal recurrent activity.

detector position. The photoreceptors thus picked up the
reflection of the LEDs and were set to return a value rang-
ing from 0 to 255 as the robot approached an obstacle. The
wheel encoders are analogous to proprioceptors and mon-
itored rotational distance, returning a value between 0 and
65,535. All sensory readings were normalized to values
between 0 and 1 and each of the five network processing
units received information from all sensory inputs.

2.4.3. Learning environment and evolution

The robot body was placed in an arena with obstacles.
Fig. 2 illustrates the experimental setup. Each individual
was represented by a different network weight matrix and
was assessed in the arena for times ranging between 20 s
and 2 min (or approximately 250-1500 activity iterations).
All sensory and neural activity was recorded. Evolution
corresponded to changes in weights and was accomplished
using a genetic algorithm.

2.4.4. Genetic algorithm

We used a genetic algorithm to evolve autonomous
agents so that they could navigate the environment (for a
review of genetic algorithms theory see [26]). In our imple-
mentation, the genetic code for an individual is its weight
matrix and the evolutionary process acted directly on net-
work structure [46]. Initial weights for the first 20 individ-
uals were randomly generated. After all individuals in a
given generation were tested in the arena, fitness scores
were used to determine the individual network structures

for the next generation. Selection was made using the rou-
lette wheel method. According to this method the probabil-
ity of a network’s architecture (its set of weights) being
passed on to the next generation is proportional to its
behavioral success as compared to the sum of all other fit-
ness scores across the generation. Network weights also
underwent a mutation process which consisted of adding
noise to each weight from an inverse normal random distri-
bution with a mean of 0 and SD = 0.1. For each generation
10% of the most successful networks structures were auto-
matically passed on to the next generation without alteration
(elitism). The process was repeated until all individuals in a
population could move and recover from collisions by
changing direction. Although we initially tested other
genetic mechanisms such as crossover, this noise muta-
tion and performance-based selection proved sufficiently
effective in generating behavior for the purposes of this
study.

2.4.5. Fitness function

The fitness scores used in the genetic algorithm were cal-
culated on-line with wheel rotation distance, direction of
movement and collision all being considered. Instanta-
neous fitness was thus a function of wheel rotation
direction:

|(D1iy) + Dry)|
1+ [(Dr() — Drey))]

Dy — D
fitness, = ( D o)l )> * 1f

1+ [(Dry + Drpy
(3.1)
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Arena Wall

Obstacle

Fig. 2. Autonomous agent experimental setup. The robot was connected
to a computer running the model neural network and placed in an arena
with various obstacles. The sensory input and motor output were
communicated via a serial line which tethered the robot to the computer.
Attached via the tether was also a DC power source that supplied power
to the two motors driving the wheels.

Dy and Dy, are left and right wheel distances covered in the
given iteration. The first ratio compares total distance
(L + R)] moved with the difference between wheels
|(L — R)| thereby rewarding the most points for fast and
balanced moves either forward or backward. The second
ratio rewards the fast but opposite wheel movements.
Straight movements and sharp turns thereby contributed
most to fitness. The reward factor (rf) encouraged forward
movements, where

If (DL([) * DR(t)) >0 Thenrf =3

3.2
Else rf =1 (32)

The directional component of the fitness function is shown
in Fig. 3. The fitness measure was also adjusted to reflect a
collision penalty (cp) raised to the power of number of col-
lisions (nc):

fitnesscymulative = (Cp™) * Z fitness, (3.3)
t

Several other fitness measures were tested. We settled on

the above function because of its efficiency in promoting

forward movement and turning while discouraging colli-

sions with walls and mid-arena obstacles.

Lo, ©
’?Q"s"aqc
e

Fig. 3. Fitness function used in evolutionary algorithm. Fitness was a
function of left and right distance traveled in wheel encoder units. Wheel
movements that enhance forward or backward movement or turning in an
efficient manner were rewarded proportional to speed and coordination.
Movement with both wheels moving forward had the reward increased by
a factor of 3. The function also has an additional dimension (not shown)
in which fitness is reduced for instances of collision.

3. Results

3.1. Distribution of dynamics in populations of random
networks

The first part of the study was aimed at establishing the
distribution of dynamics in random networks of a given
size and given intrinsic unit properties. In other words, to
get a sense for how variable the distribution of dynamics
might be if only network connectivity was varied. As a first
step we generated 1000 random networks. Each of these
five-unit, fully recurrent, networks was started with ran-
dom activity conditions and run for 1000 iterations. We
then categorized the networks according to the close
returns algorithm described in the methods section.

Fig. 4 shows examples of (i) overlapping traces and (ii)
intensity plots of activity in sigmoid activation function
networks. The randomly connected networks’ activity
dynamics were categorized as (a) fixed point, (b) periodic
oscillations, (c) close returns or (d) turbulent. We repeated
the experiment for RBF functions.

Under both activation functions the majority of weight
patterns were found to result in neural assemblies with
limit-cycle oscillatory behavior (71.1 & 1.4% for sigmoid;
43.9 £ 1.6% for RBF). Table 1 summarizes the distribution
of dynamics for both the sigmoid and RBF populations.

3.2. Distribution of limit cycle periods

Next we examined the distribution of the periods for
those networks categorized as having limit cycle dynamics.
Observed periods were as long as 90 iterations for the sig-
moid networks and as high as 135 iterations for the RBF
networks. The large outer graph in Fig. 5 shows this distri-
bution of limit cycle periods for the sigmoid networks pop-
ulation. Over 95% of sigmoid networks exhibiting limit
cycles had periods between 2 and 24 iterations. Though this
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Fig. 4. Activity-dynamics categories in random networks. The left column panels are superimposed activity traces of all units in a given network. In the
right column graphs each unit occupies a separate row and activity is represented by intensity (z scale). The left-hand traces are for the first 50 iterations to
highlight the initial phase of the run and settling phenomena. The intensity graphs show the first 100 iterations for the same run and highlight any pattern
that might eventually develop. The trace and intensity charts of a given row correspond to a dynamic category: (a) Fixed point: all units settle on a fixed
value; (b) Limit cycle—period 4: the units eventually settle onto a periodic pattern, in which unit activation values repeat every forth iteration; (c) Close
returns: The network has a pattern that comes close to repeating but never repeats perfectly. The close to periodic nature of the pattern can be discerned in
the later portion of the intensity graph; (d) Turbulent activity: Networks with these dynamics do not have a readably identifiable activity pattern.

Table 1
Distribution of network activity-dynamics by category network activity
was categorized into four types of dynamics

Activation ~ Dynamics Count % of Population  SE%

function category

Sigmoid Fixed point 100 10.00 0.95
Limit cycle 711 71.10 1.43
Close returns 134 13.40 1.08
Turbulent/other 55 5.50 0.72
Total 1000 100.00

RBF Fixed point 27 2.70 0.51
Limit cycle 439 43.90 1.57
Close returns 185 18.50 1.23
Turbulent/other 349 34.90 1.51
Total 1000 100.00

This table shows the distribution across the categories as a percentage of
population for sigmoid and radial basis activation functions. Each pop-

ulation consisted of 1000 networks. (SE% = /(p(100 — p)/n)).

steep drop with a long tail may look like an x™¢ power law
relation, closer examination reveals a preference for certain
periods and an interleaving in the probability of odd and
even periods.

3.3. Dynamics and plasticity

We also performed preliminary tests to explore changes
in activity distribution resulting from the introduction of
a naive Hebbian algorithm. The addition of dynamic
changes in weights found 100% of networks converging
onto fixed point activity within 1000 iterations. Although
these plastic networks all settled to fixed points, they
tended to sweep through several activity regimes in a man-
ner not seen in the non-plastic counterparts. For example,
the activity records for plastic networks thus included
chirp-like frequency fluctuations—a phenomenon never
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Fig. 5. Distribution of dynamics in random networks. Insert graph summarizes the distribution of dynamic categories in the sigmoid and RBF random
network populations. In both cases the majority of networks exhibited limit-cycle dynamics. The outer graph is a breakdown of the limit cycle category in
the sigmoid population. Specifically, this histogram shows the number of networks exhibiting each limit cycle period (in iterations). Fixed point networks
are included as period 1. Most networks oscillated with a period of 2 iterations and 95% of networks exhibited periods between 2 and 24 iterations. A small
proportion of networks showed long periods (>24 iterations) with a maximum recorded period of 90 iterations.
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Fig. 6. Activity dynamics of a plastic network. Networks were run with the addition of a naive Hebbian plasticity rule. The ongoing changes in weights
often resulted in networks covering a range of activity patterns. These networks quickly tended to synchronize and ultimately all settled to fixed point
dynamics. The superimposed activity traces in the left panel highlight an example of a network’s progression from turbulent activity through synchrony
and ultimate convergence to a fixed point all within 200 iterations. The right panel clarifies the progression of activity for the individual units and
highlights the transitional synchrony between the first and fifth unit for the same data.
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observed in the static connectivity networks. Fig. 6 illus-  ulations categorized as having close returns or turbulent
trates an example of the tendency of plastic networks with  activity included networks exhibiting dynamics that may
initial close returns or turbulent activity to quickly fall into  hold important relation to those seen in the biological

a synchronous state and then settle to a final fixed point. counterparts. Fig. 7 illustrates the activity of an RBF net-
The settling of activity onto fixed points was a direct result ~ work with units that displayed an intermittent activity pat-
of the naive Hebbian algorithms tendency to push connec- tern, switching between a laminar quiescent phase and

tions to extremes such that the weight growth eventually  turbulent activity. This intermittency [53,63,70] is highly
saturated the input in either the excitatory (+) or inhibitory =~ reminiscent of paroxysmal activity patterns seen in humans

(—) directions. and other organisms. Variants of this intermittency pat-
terns were also seen in sigmoid networks categorized as
3.4. Complex network dynamics and intermittency having close returns or turbulent activity. The variant

included continuous switches between turbulent behavior

As a next step in understanding complex network  and synchronized activity.
dynamics we relied on the categorization algorithm to Note that the unit properties and connectivity were not
focus our search. The initial review of the non-plastic pop-  plastic and did not change over time. The changes in acti-
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Fig. 7. Intermittent activity in a recurrent network. The left panel shows the superimposed activity traces of an intermittent network. The chart highlights
the paroxysmal nature of the switch between turbulent and laminar phases. The right panel is an intensity graph of the same data showing the relation of
activity between the units. Note that notwithstanding the fact that weights were not changed during the simulation there are clear changes in the dynamical
output. This particular network thus demonstrates that the emergence of intermittent paroxysmal activity need not require changes in synaptic

connectivity.

vation phases seen in these intermittent networks were
completely due to the propagation of activity. The catego-
rization thus proved to be an important technique for
quickly demarcating complex dynamics and opens the pos-
sibility for identifying sub-classes of dynamics that can be
potentially correlated with network structure. A detailed
analysis of the statistical properties of this intermittency
is presented in a forthcoming paper [51].

3.5. Evolution of behavior in autonomous agents

The third part of this study was designed to further
focus the search of network space to those complex dynam-
ics that relate to behavior. To this end, we equipped the
same type of recurrent networks employed in the earlier
sections with sensory inputs and motor outputs. We then
evolved these networks to perform simple roaming and
avoidance tasks. Here we report on the evolution of
dynamics and behavior over generations in one such
lineage.

3.5.1. Fitness evolution over generations

The first random embodied generations of 20 individuals
showed a distribution of dynamics analogous to that seen
in the disconnected random networks. The predominate
neural activity patterns were fixed point and limit cycles
with the addition of environmental noise. These neural
dynamics were reflected in behavioral phenotypes in which
individuals did not move or exhibited highly oscillatory
activity of varying amplitudes with little to no motion
across the arena. No individual in this first generation
showed behavior that even remotely looked like roaming
and avoidance.

Once the first generation was assessed, we began to
apply the genetic algorithm described in the methods sec-
tion. Panel (a) in Fig. 8 shows the evolutionary progression
and rise in fitness measure over all individuals (Fig. 8a).
Panel (b) plots the mean and standard deviation for these
fitness measures across generations. Also included in (b)
are the maximal and minimal fitness scores attained in a
given generation. Note that the progression was not always
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Fig. 8. Evolution in fitness of recurrent networks over generations. The left graph (a) illustrates the evolution of fitness in a population over 15 generations
(X axis). Each generation includes 20 new individuals ( Y axis). Fitness levels (Z axis) improved markedly over the course of the evolution. Fitness did not
always rise from one generation to the next. The adjacent panel (b) charts the mean with standard deviation (gray area) across generations. The plot also
includes the highest (max) and lowest (min) individual fitness scores achieved in a given generation. The entire population evolved out of the seizure within

14 generations from the initial set of 20 random individuals.
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Fig. 9. Evolution of dynamics in autonomous agents. The left column panels are superimposed activity traces and the right panels are stacked intensity
plots of recurrent unit activity. The graphs contrast a second generation’s highly periodic neural activity (top panels) with the more complex activity seen
in a fourteenth generation network (bottom panels). Chevrons on the bottom graphs of evolved network activity mark the time at which collisions are
registered by a bumper. These collisions were followed by network reactions leading to behavioral changes in movement direction. In this case, the system’s
solution to extricating itself from obstacles is through reversal of all unit activity resulting in a physical reversal of the robot body.

in the direction of improvement as defined by the fitness
function. On the whole though, as evolution progressed,
the profile changed markedly as compared to the first
generation. Within 14 generations the entire population
was able to navigate the simple environment with almost
all individuals exhibiting multiply-stable behaviors with
few or no cases of default limit-cycle oscillatory motor
behavior.

Examination of the various transducers and their corre-
lation with behavior showed that the recurrent network
relied chiefly on the bumpers and wheel encoders to navi-
gate the environment and avoid obstacles. Although we
ran the experiments in a dark environment, the ambient
light from the LEDs biased the photoreceptors such that
the change registered in approaching an obstacle was not
sufficient to affect the network. This limitation could have
been corrected by further normalizing the photoreceptor
signal. However, in order to simplify the experiment and
its interpretation, we opted to eliminate the photoreceptor
input. Data reported in the results are from runs in which
input is restricted to wheel encoders and bumpers.

The low mean fitness (189.1 + 368.4) of the first genera-
tion was approximately 10% of the mean fitness later
achieved by the evolved population (3973.8 + 1130.3).
The low first generation fitness corresponded closely to
the motor movements reminiscent of seizures. The success-
ful navigation seen in the evolved networks consisted of
steady forward body motion with clear reversal and change
of directions upon encountering a wall or mid-arena obsta-
cle. The increase in these behaviors corresponded with a
rise in fitness. Occasionally, following mutation, an individ-
ual or two in a given generation would fail to move or
move only in reverse. The particulars of these behaviors
usually dropped off by the next generation due to low prob-

ability of the responsible weight pattern being passed on by
the evolutionary algorithm.

3.5.2. Evolving network activity dynamics in autonomous
agents

The rise in fitness function and evolution of behavior
was accompanied by an evolution in dynamics. The dra-
matic change in activity patterns is demonstrated in
Fig. 9 which compares examples of neural activity traces
of an individual from an early generation (generation 2)
and a network with evolved behavior (generation 14).
Whereas the networks of generation 0 exhibited mostly
large amplitude, highly oscillatory activity, the activity in
evolved networks was generally complex exhibiting both
a range of frequencies and multistable responses as they
interacted with the environment. The evolutionary algo-
rithm thus reliably searched an exceedingly large network
space and within 14 generations was able to focus on net-
works that not only exhibited complex dynamics but that
could also accomplish a behavioral task.

4. Discussion
4.1. Network space and epilepsy as default

Epilepsy in its many forms is the archetypical dynamical
ailment [38,39,72]. In trying to establish the underlying fac-
tors that lead to this condition much of the literature has
focused on intrinsic changes to cells or the changes in cell
type distributions [11,45,67]. However, the network models
examined in this study show that when intrinsic properties
are held fixed a broad range of network behaviors are still
accessible through connectivity changes even in the sim-
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plest of networks. The fact that connectivity patterns can
underlie phenomena such as hyperexcited synchrony may
not be surprising, but the ease at which they were found
through random searches is surely notable. In particular,
the suggestion that this class of networks and concomitant
activity patterns may turn out to be the statistical norm
and default scenario is disquieting. In the case of these
deterministic non-plastic nets, once a network falls into a
periodic state there is no way for it to break out. Moreover,
some of the networks categorized as having nearly periodic
orbits may have dropped into periodic limit cycle activity if
allowed to run beyond the allotted 1000 iteration. As such,
the number of limit cycle networks may have actually been
underestimated. These observations turn the question of
what causes epilepsy on its head. Instead of asking how
epilepsy comes about they compel us to ask how recurrent
neural ensembles ever manage to avoid this ubiquitous syn-
chrony in the first place. That is, why are we not all epilep-
tic, all the time?

4.2. Unbiased exploration of the relation of architecture
to dynamics

In the introduction we drew attention to the analytical
intractability and computational barriers hampering the
establishment of a connection between the architecture of
networks and the dynamics they exhibit. Although the
models we present are simple and future work will require
exploration of more complex models, the ability to study
the distribution of major categories of dynamical behaviors
gives some insight into the propensity of networks to get
locked into limit cycles and offers a measure by which to
examine the effects of network connectivity and intrinsic
changes. An important feature of the network sampling
approach presented in Section 3.1 is that it distinguishes
itself from models based on known anatomical structures
by exploring connectivity in a less biased manner. Rather
than make assumptions regarding connections structure
we search the space randomly. This approach does not pre-
clude commencing with more restricted anatomical
assumptions and indeed current work is exploring the
dynamical propensities of spatial networks [52]. However,
allowing for all possible connections proved productive in
that we were able to establish some general distributions
in the population despite the large number of possible net-
work structures thereby providing a sense of the terrain
and challenges biological networks face in evolution and
development.

The findings on intermittency in these simple networks,
as presented in Section 3.4, further underscores how such
research might help elucidate the workings of real neural
networks in their relation to activity and behavior. For
example, the model clearly demonstrates that intermittent
dynamics need not require changes to the underlying net-
work architecture nor intrinsic unit properties. To think
that such dramatic changes in activity can be supported
by network activity propagation alone is highly intriguing

and has direct implications to physiological recordings.
For example, it is often assumed that paroxysm might be
a reflection of changing connectivity (plasticity) or funda-
mental shifts in intrinsic cell properties, however this case
is a potent counter-example that undermines the certainty
of such assumptions [51].

4.3. Recurrence and universality in network modeling

Early connectionist models were mostly feed forward.
Even those networks that incorporated recurrence had
equilibrium as the general goal, in the sense that network
activity was meant to settle on a fixed point [24,28]. In
order to account for continuous interaction with the envi-
ronment our network modeling focused on incorporating
recurrence and achieving persistent activity [14,46,54,78].
The exclusion of cellular details to achieve computational
simplicity may seem an ill-advised omission that under-
mines the applicability of any conclusions to the true work-
ings of the biological network. However, the primary
reason for simplification was not to speed computation
or due to doubting the considerable effect that changes in
intrinsic properties can have but rather to demonstrate
the universality and generality of principles. Connectionist
modeling of the sort applied in this study helps illustrate
that some of the most salient questions facing neuroscien-
tists can be addressed at this higher level. This sort of con-
nectionist modeling thus allows for the exploration of the
most fundamental parameters relating to neural dynamics.
Furthermore, in abstracting to high-level features (inhibi-
tion, excitation, connectivity patterns, etc.) we specifically
allow for the certainty that there are important mecha-
nisms at the cellular level that have yet to be discovered.

4.4. Close return and the taxonomy of activation patterns

We chose a variant of close return analysis as a catego-
rization algorithm primarily because it is well suited to
quantify unstable periodic orbits and can distinguish them
from limit cycles and turbulence in time series [42]. There
are indications that it can be effective in analyzing normal
and epileptiform EEG [10,32,47]. The technique was also
found to correspond well to visual categorization and
was computationally efficient as compared to other non-
linear dynamic approaches and Fourier-based methods.
The intermittency case of Section 3.4 shows that these
dynamics have yet to be classified into many related subcat-
egories. The selection of close return for the analysis of net-
work dynamics does not preclude the application of other
dynamical categorization methods [35,51,53,63,70].

4.5. Categorization and distribution of dynamics in
population

The difference between the activity of any two networks
in a given activation function class was entirely attribut-
able to differences in connectivity and initial states. The
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distributions graphed in the Fig. 5 (insert) demonstrated
that dynamics could be quickly parsed out even in the face
of a combinatorial explosion and that the area taken up by
each category could be reliably estimated. The findings
imply that the behavior of a random network of a given
size and activation function is, at the very least, statistically
predictable. The reliability in which activity could be cate-
gorized suggests that the method can serve as a foundation
for searching for correlations between activation patterns
and gross architectural features.

4.6. Distribution of attractors within networks and
considerations of multi-stability

Given the size of the sample, the predominance of limit
cycles in the population was well established. However,
there is the further issue of the number and size of attrac-
tors per network. It is important to note that the categori-
zations were performed across populations but assessed
only once for each network. For example, reflection on
the periodic sigmoid networks will show that all such net-
works have at least one additional attractor, namely the
trivial fixed point case when all units are set to 0 as an ini-
tial condition. How many more attractors do these random
networks typically have? If they have multiple attractors
what is the distribution of the dynamic categories? How
large are the basins of these attractors? In other words,
how likely is it for activity to fall into any given attractor?

We performed some preliminary investigation of this
question using all possible combinations of extreme activa-
tion (i.e., units were set to either max or min values) for the
intermittency network of Section 3.4. For this particular
case and set of initial conditions we were able to demon-
strate that the network always returned to the same general
activity pattern while not repeating itself. Thus, even if
testing all initial states proves impractical either by analyt-
ical methods, linearization techniques or brute numerical
approaches the question of the distribution of categories
of dynamics for a given network is analogous to that of
the distribution in a population and so is also approachable
by the sampling techniques applied in this study. That is,
just as we can sample and search the population for the dis-
tribution of dynamic categories, each network can similarly
be explored through geometric, random or extreme seeding
of initial states as well as through targeted searches such as
genetic and learning algorithms.

This question of attractors becomes particularly impor-
tant if we are interested in the formation of network
properties during evolution, development, learning and
pathogenesis. For example, it is possible that evolution in
the embodied networks resulted in networks with an
increase in the size of already existing basins of attrac-
tion. It is also possible that there was an increase in the
number of attractors or change in the types of attractors.
Analogously, we can inquire whether epileptic regimes
are already present in the normal brain such that epilepto-
genesis merely increases the range of activations that will

trigger a seizure or whether epileptogenic events actually
introduce completely new attractors. Answering these ques-
tions and establishing whether the process might be reversed
could mean the difference between providing temporary relief
from seizures and finding the route to permanent cures.

4.7. Scale-free and clustered distributions—implication to
network theory

The application of continuous networks versus binary
networks may help bridge the gap between current network
modeling trends and neuroscience. Analysis of the recur-
rent models also demonstrated that networks exhibiting
complex dynamics and many of the critical questions listed
in the introduction emerge in even these small scale sys-
tems. One need not focus on large “scale-free”” networks
of the size of the internet or human populations before
complex and possibly scale-free activity is generated [1,3].
Moreover, these simple networks may help expose new dis-
tributions and principles that have yet to be identified in
general network theory. For example, the distribution of
limit cycle periods illustrated in Fig. 5 seems at first to be
of a traditional scale-free form, but on closer inspection
is shown to be highly non-monotonic. Preference in certain
period lengths and the interleaving of probabilities alerts us
to the fact that there are fundamental questions relating to
limit cycle periodicity that cannot be simply dismissed in
favor of focusing on the larger trend.

The peculiar distribution of limit cycles also highlights
how important trends might go unnoticed in real data.
The luxury of modeling with difference equations in the
absence of noise helped expose this non-monotonic drop
in the period length distribution. The interleaving of even
and odd periods in and of itself is suggestive of the possi-
bility that a given structure may entail predispositions to
certain activation patterns and that periodicity of a net-
work is likely closely related to topological features of con-
nectivity [52,68]. This fascinating phenomenon suggests
that the binning of noisy biological data could obscure
important relations between structure and activity includ-
ing inherent inclinations to be attracted to specific periods.
If the clustering in certain periods and other types of pat-
terning can be related to the architectural underpinnings
this could be extremely important for identifying the mech-
anisms of frequency banding seen in biological networks
and the shifts they undergo in pathological states [48].

4.8. Hebbian nightmares and searches with naive
plasticity

As complex dynamical systems go, neural networks have
features such as complicated connectivity patterns and
recurrence that make them particularly difficult to under-
stand and predict even when compared to the most com-
plex physical counterparts (chemical lattices, percolation
systems, spin glasses, etc.). Moreover, the addition of
use-dependent plasticity can make the study of these
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already complex systems seem absolutely daunting. For
example, in assessing the dynamics of a five unit network,
the introduction of plasticity necessitates the additional
tracking of 25 weights thereby changing the case from a
five-dimensional problem to one with 30 dimensions. Not-
withstanding the difficulty, the fact that networks learn and
change as they interact with the world cannot be ignored.
Are the activity distributions seen in the static architecture
case just as true for networks with plasticity or might plas-
ticity hold the key to eliminating the predisposition to
entering limit cycles?

Unfortunately, the preliminary tests with naive Hebbian
learning in weights strengthened by connectivity showed
increased inclination to oscillation and fixed point dynam-
ics (Section 3.3). This propensity to fall within one of these
two dynamical regimes is in line with previous studies per-
taining to the dynamics of weights [29]. Thus, if synchrony
of activity is a problem facing the brain, then the addition
of plasticity in a naive Hebbian form seems only to mark-
edly worsen the problem. At the very least, the restricted
dynamics that resulted from the present addition of plastic-
ity suggests that there must be more to the application of
plasticity than accounted for by this overly simplified learn-
ing rule.

Despite the inability of this form of plasticity to avoid
pathological dynamics, these plastic models may still be
helpful in illuminating network space and significantly
decreasing the time for exploration of possible networks.
The self-organization seen in the plastic network described
in Section 3.3 shows that simple Hebbian plasticity can
skew the final distribution to limit cycles and ultimately
fixed point activity. Networks with this simple form of
plasticity could not reliably or persistently exhibit complex
dynamics. Ironically, this failing is extremely informative.
Specifically, the approach suggests that the probability of
limit cycle and fixed-point behaviors may increase as
weights are saturated. Most importantly, instead of the
added dimensions expanding the time needed for explora-
tion we see that plasticity can hasten the convergence in a
given space. Thus, rather than compounding difficulties
this naive plasticity, and plasticity in general, may be a
way of expediting the charting of network space. The net-
works found in this manner can act as comparators for
random and evolved embodied systems when studying net-
work architecture.

4.9. Intermittency and uncharted dynamics

The random sampling and observations of Sections 3.1
and 3.4 show that the dynamical features of networks
can help direct the exploration prior to even considering
what their function may be. The intermittent network pre-
sented in Section 3.4 is a particularly important example in
that it demonstrates how a simple network can exhibit
emergent complex and possibly unexpected behavior with-
out the dynamics being explicitly built into the workings of
the constituent units. The intermittency seen in paroxysms

may be similarly driven by activity reverberations originat-
ing in the network structure thus suggesting a completely
new path to epilepsy beyond those already posited
[38,39,72]. These models thus provide an opening for con-
sidering the endogenous mechanisms for transition in
dynamics in both pathological and healthy conditions. Spe-
cifically, the model can generate shifts in dynamics without
having to assume extraneous factors such as noise, targeted
environmental interference or entering into the endless
regress of postulating secondary neural populations respon-
sible for driving the network. These autonomous transi-
tions might also elucidate mechanisms related to
behavioral shifts in healthy organisms. The relation of
these intermittent networks to epilepsy and attention is fur-
ther explored in a forthcoming paper [51].

4.10. Charting small but critical constellations in
parameter space

In studying the network activation patterns we began by
asking what range of dynamical behaviors would be found
if the entire space was searched? The fact that simple net-
works can show a predictable distribution of dynamical
behaviors suggests that the same assessment might be made
in more complex models. As we move from the common
case of periodicity and fixed points to focusing on intermit-
tency and evolved networks, new questions arise: How
peculiar are the behaviors presented? What are the implica-
tions to the biological case?

Given that a system with fixed unit properties and a rel-
atively limited range of network connectivity parameters
could, when searched, exhibit such a broad range of
dynamics implies that when complex biophysical network
models are presented they cannot be taken at face value
simply because their units capture biological detail. The les-
son here is that extensive sweeping of connectivity param-
eters (geometry, spatial distribution, homogeneity, etc.)
may always be in order.

Though perhaps a given set of dynamics may appear
peripheral to the statistically normal workings of networks
of a given configuration it is important to remember that
even rare patterns might be important for understanding
pathology and health. Epilepsy is a relatively common ail-
ment that can be devastating, yet it affects only 1% of the
population and for the most part exhibits itself only a small
portion of the time. This suggests that a pattern of clinical
significance may be exhibited in only 1% of the networks.
Conversely, dynamics that appear rare in random networks
or designed models may prove to be the norm in biology.
To deduce the applicability of a model based on the
dynamics most prevalent within an expected parameter
range may result in overlooking important behaviors.
For this reason, the use of a search paradigm like an evo-
lutionary algorithm in autonomous agent modeling can be
essential. By following the path simulated evolution or
learning algorithms trace to these small constellations of
complex networks, we may be able to target the essential
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factors and reveal solutions biological evolution has found
in the past. Pioneering work in this field has shown that
this approach to modeling can find solutions that elude
more traditional forms of investigation [61,84].

At first glance, the predominance of epilepsy seen in the
initial random networks might be taken as evidence that
the specifics of the present model are too far removed from
biology, and that the over-abstraction of unit properties is
at fault. By this account successful behavior exhibited in
the evolved networks is simply a small and skewed subset
on the fringes of the distribution. This assumption however
neglects to consider that, through learning and evolution,
biological systems may similarly converge on very small
constellations of useful network structures in a space occu-
pied mostly by ineffective networks. Thus, the predomi-
nance of epilepsy in these models may not be due to an
absence of critical intrinsic factors but rather the reflection
of a real connectivity challenge that extends into the bio-
logical realm.

4.11. Dynamics and the world: spatio-temporal
consideration in traditional, virtual world and embodied
neural modeling

Though time and other elements of the model were dis-
cretized in this study and not specifically matched to bio-
logical measures they were not arbitrary. One of the most
interesting consequences of running a model in real time
and a real environment is the manner in which a net-
work becomes attuned to its body. The importance of this
became apparent when we increased transmission and pro-
cessing rates only to find that these brain—body changes
could profoundly affect network behaviors, which then
required retraining (results not shown). This is an interest-
ing phenomenon which one would not normally encounter
under traditional forms of modeling, where time scales may
appear closely linked to biological measures but can actu-
ally prove arbitrary with respect to the environment.

Given that actual brain—world interactions are not
incorporated into most neurophysiological modeling it is
not surprising that a great many models that are said to
accomplish a given computation cannot be translated into
physical world performance. The cost of not considering
embodiment has figured prominently in the critique of tra-
ditional Artificial Intelligence and has been implicated in
the field’s stagnation on several fronts [4,13,79]. The differ-
ence that embodiment makes in Artificial Intelligence and
Robotic modeling [46,61,84] may similarly be extended to
basic computational neuroscience.

Whether virtually or actually embodied, the evolution of
networks in a world can connect dynamics to behavior and
impart meaning to computation. Modeling in embodied
systems, however, has the disadvantage of being consider-
ably slower than running traditional network models of
comparable size. This is particularly true of physical
embodiment. A virtual world version of this experiment
may have provided similar information with the advanta-

ges of speed, technical simplicity and increased experimen-
tal control over the environment. So why bother with
actual embodiment?

It is not a coincidence that the capabilities of models
raised and tested in virtual worlds seem to eclipse the per-
formance of corporeally embodied models. The embodied
models in Section 3.5 responded to physical elements in
the world, be they transmission rates, physical characteris-
tics of the body (e.g., body shape, size, wheel rotation fea-
tures) or properties of the environment (e.g., friction and
gravity). Direct interaction with physical objects and expli-
cit consideration of real world parameters is a much more
challenging task than maneuvering in a streamlined and
idealized version of an environment. In applying spatio-
temporal simplification, factors that are clearly germane
and informative to the biological system may be wrongly
excluded as redundant or inadvertently conflated into the
workings of the network models. It is for this reason that
performance of networks raised in streamlined worlds
may not always be portable to the embodied case. The fact
that the embodied experiments did not build in such
assumptions about the surrounding world can help increase
the confidence in the findings. For a review of the reasons
physically embodied modeling may be qualitatively differ-
ent from virtual implementations see [46,84].

4.12. FEvolution of dynamics, behaviorally relevant activity
and autonomy

The aim of the embodied sections of this study was to go
beyond gross categorization and to focus the search of net-
work space to networks with dynamics that might relate
directly to behavior. This approach is analogous to clinical
diagnoses that do not limit themselves to mere study of
physiological recordings and that consider behavioral
states as an essential if not central indicator of an assess-
ment.

The randomly connected networks predominately exhib-
ited what might be considered pathological behavior. That
is, continuous shaking or complete inactivity. Through
interaction with the world the genetic algorithm was able
to evolve networks away from this motor behavior. The
activity traces following the collision time markers on
Fig. 9 show how an evolved network responded to tactile
input. As part of the dynamic response the network under-
goes a brief episode of turbulent activity followed by a
relaxation into new activity ranges. This flip in activity cor-
relates to the change in wheel direction. The solution set-
tled on by this evolutionary run thus appears to be a
parsing of the activity space such that the network flips
to appropriate nearly periodic attractors as a response to
tactile input.

The degree to which these found strategies can be said to
be autonomous is certainly debatable. The task was highly
simplified and it is consequently not surprising that the
evolved behavior is fundamentally reactive. These reactive
behaviors are akin to those seen in Braitenberg vehicles [7]
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and could in fact be accomplished with as few as two neu-
rons [81,82].

The evolution of networks in a world is only a first step
in the exploration of behavior. The next step will require
identifying the elements necessary to go beyond simple
reactive behavior. For example, is an increase in the num-
ber of units, transducers or actuators necessary? Is there a
need to increase the complexity of the unit behavior or con-
nectivity? Do the genetic code, evolutionary algorithm or
fitness functions need to be made more sophisticated? Is
there a need to boost the number of individuals and evolu-
tionary generations? Does plasticity need to be incorpo-
rated? Is opening the range of possible behaviors by
enriching the environment and removing the tether essen-
tial? Do autonomous agents need to be coevolved, requir-
ing interaction with other intelligent systems? All the
above seem to be obvious candidates for forwarding the
search. What else might be needed for truly autonomous
intelligent behavior? It is in the identification of factors
required for changing the structure of networks so that
they can interact intelligently with the world that will help
demarcate the architectural principles that underlie healthy
versus pathological dynamics.

4.13. Embodied neurophysiological modeling of behavior
and pathology

Aside from the understandable need to expand the com-
plexity of the model, even these preliminary recordings of
activity in simple embodied versions can already present
novel and revealing perspectives of epilepsy and pathology.
On a technical level, the approach offers several advantages
over traditional biological recordings including: (i) Full
access to the activity levels across the entire network. (ii)
Full access to network connectivity weight. (iii) The ability
to repeat experiments with identical network structures
over differing circumstances. (iv) Access to complete popu-
lations through evolution. (v) Allows for real-time interac-
tion with any element of the model.

The main advantage compared to traditional computa-
tional models is the access to a physically instantiated
behavioral measure. The fact that many physiological
and computational models are both figuratively and liter-
ally disconnected from the world is a considerable impedi-
ment to the interpretation of their applicability. Although
such models may claim kinship to reality through reduc-
tionist detail we do not know whether they capture the
relevant dynamics. If a model’s unit dynamics seem iso-
morphic to that of a real neuron will the system translate
to behavioral competence? A central role of the neural sys-
tem is to interact with the environment; to process data.
Yet so few computational physiological models do so.
The prevalent strategy is to attempt and reconstruct the
observed dynamics of cell firings. The most thoughtful of
these projects speculate on the essential aspects of the
coding before considering how they might be generated
by a network. But even in cases where the computational

aspects are explicitly considered, performance is still mea-
sured by replicating the purported salient part of the
dynamics in the absence of working proof. The limitations
of this approach become apparent when behavioral mea-
sures are required.

Once a corporeal demonstration is demanded and a sys-
tem’s behavior is considered, central conjectures such as the
step from synchrony to intelligent processing are not as
obvious as supposed [20,66]. The embodied experiment of
Section 3.5 suggests that (a) the highly oscillatory locked-
in limit cycle activity is likely to be a problem, (b) that solu-
tions to a behavioral task may lie in the direction of escape
from synchrony and (c) that rather than synchrony, it is
complex patterns of changes in firing frequencies, phases
and amplitudes that may characterize behaviorally success-
ful solutions. In any event, the experiment allowed for
extension of model testing beyond the ability to mimic pat-
terns pre-selected by an experimenter and instead its suc-
cess can now be measured in terms of the outward
behavior of the system. It is entirely likely that there are
complex yet elegant dynamical patterns that are biologi-
cally relevant but have yet to be recognized by physiolo-
gists due to limitations in current imaging and recording
techniques or due to an inability to imagine dynamical
strategies beyond synchrony. Rather than just focusing
on the most obvious dynamical features seen in biological
systems, the evolutionary approach can help guide us to
the candidate neural structures and dynamics that may
have important computational applicability.

4.14. System-based oscillations do not require pacers
or central clocks

Synchronizations seem to be everywhere in complex bio-
logical recordings. It is not surprising that synchrony has
been so closely connected to higher cognitive functions
such as perception, attention, action, and consciousness
[20,66]. Moreover, because these oscillations can be incred-
ibly precise, often the intuition is that there must be pacer
cells or other mechanisms external to the network in ques-
tion that keep an ensemble synchronized [36,37].

The simple network models presented here help under-
score the role of network connectivity in oscillations and
synchrony. Our use of the term synchrony is somewhat
broad and is intended to cover the range of periodic
phase-locked periodic activity [33] observed in the random,
plastic and evolutionary networks. This definition of
course subsumes networks in which the activity of all units
was fully coherent. Note that if the concerns regarding the
ubiquity and dysfunction of synchrony are valid even
under this broader definition the problem becomes all the
more intractable in the more precise zero phase delay cases.

Indeed, the first set of experiments clearly demonstrated
that achieving synchrony is not as rare or difficult as it may
seem, and that self-organization of activity is quite ubiqui-
tous in these networks. These observations are in line with
the recent findings in network and synchronization studies
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[69,71]. Careful consideration shows that synchronous
periodicity—and more importantly its avoidance—has
been a major longstanding theme in the Artificial Life stud-
ies [17,34,87]. Incredibly, Alan Turing in a little known
paper did some amazingly forward thinking work on bin-
ary recurrent networks [77,73]. Little recognized at the time
and dismissed, the paper was a prescient pre-shadowing of
connectionism. Although dynamics and their categoriza-
tion were not explicitly Turing’s concern, these clearly are
a factor. Recently Turing’s models have been materialized
using computers and clearly show networks that fall into
the synchronous and chaotic activity [73].

Obviously, the propensity of any given network structure
to fall into synchrony and the distribution of periodic net-
works in a population can change depending on the intrin-
sic activation function. This is clear from the differences in
the distribution seen in RBF and SAF populations as illus-
trated in the insert to Fig. 5. However, the results show that
limit-cycle predominance was preserved even under this
radical change in activation functions. Both cases clearly
establish that even if intrinsic mechanisms are held steady,
changes in dynamic patterns can be a collective network
phenomenon. The present exploration of recurrent net-
works not only showed that these oscillatory dynamics
can be common regimes but also that connections alone
can drive oscillations at a range of frequencies independent
of individual cell predisposition. Fig. 5 underscores the fact
that these periods can far exceed the time scales of the units
in a network or the update rate of the model. Although this
may seem trivial to connectionist modelers, it is not clear
that the implications are fully recognized by neurophysiol-
ogists. Oscillating biological ensembles may under certain
circumstances be driven by pacer cells, but these models
demonstrate that no central pacers are necessary and the
search for such entities may be in vain or misdirected. The
implications to pathology and behavior are obvious. Alter-
ations of connectivity are at least sufficient to bring about
the massive changes in dynamics that underlie both seizures
and intelligent behavior.

4.15. The ubiquity of synchrony and the escape to
complexity

Synchronous assemblies may actually be a hindrance
rather than a prerequisite for action. The standalone net-
works and the first-generation embodied models show that
networks will produce synchrony quite readily, that this
synchrony does not seem to contribute to behavior and
that it can hamper interaction with the environment. Syn-
chrony may also exact various physiological and metabolic
tolls. In a neural system these may be aggravated with the
addition of certain forms of plasticity [55]. The emerging
theme from the standalone, plastic and evolved models is
that it is not the achievement of orderly synchrony that is
the challenge but rather the escape from its engulfing ubiq-
uity. One might say with respect to epilepsy that “the dis-
order is in the order”.

It has long been postulated that synchrony might be
associated with pathology [18]. Complex systems may be
able to—and may need to—accomplish information pro-
cessing without binding in the sense of synchronous sub-
populations. From this alternate perspective the question
of synchrony and how systems find escape from its grasp
becomes compelling. How does processing take place with-
out falling into synchrony? The ubiquity of synchrony sug-
gests that the solution is not simple.

This study suggests that even though the a priori
chances may be stacked against organisms, an evolving
interaction with the world offers more hopeful odds of
achieving autonomous dynamics. Here we demonstrate this
principle in the evolution of small networks. Interestingly,
there is also evidence that such changes take place in devel-
opment. There are striking reports in the developmen-
tal and epilepsy literature that suggests the earliest forms
of activity seen in the developing embryo are perilously
ictal in character, that the neonatal brain is more suscep-
tible to seizures and that crucial stages in development
are accompanied by changes in these dynamic profiles
[27,6,59].

4.16. Embodiment and the unbinding problem

The evolutionary sections of this study directly address
the problem of trying to relate the escape from periodic
dynamics to behavior. If a system is independent of the
world then no interaction with the world is possible and
the tendency to lock in synchrony can take over. If a sys-
tem wholly relies on the environment to pull out of syn-
chrony then the system may simply become captive to the
dynamics of the world. Extending the preceding synchrony
discussion to the cognitive realm, the question thus shifts
from how representations get temporally bonded across a
network (the binding problem) [20,66] to how unit activi-
ties may become sufficiently independent from the world
and each other so that they can represent and act (the
unbinding problem).

Even if the intrinsic dynamics of cells are such that
they can underwrite intelligent behavior, a higher order
of self organization, beyond simple synchrony, was
required. Achieving the correct connectivity for intelligent
behavior necessitated learning or evolution and the con-
text of a world. The random networks suggested that
death and seizures occupy the largest part of parametric
space even for normal cells. As the intermittency case
showed (Section 3.4), limiting the search to networks cat-
egorized under more complex dynamics and systemati-
cally looking at network activity patterns can be
illuminating. Such a search can help identify basic mech-
anisms for escaping synchrony and autonomously switch-
ing between dynamical regimes [S1]. And yet, though the
intermittency network may elucidate mechanism, the rela-
tionship to behavior is still extrapolated, a conjecture. It
is for this reason we needed ways to explore the sizable
space to find architectures that can lead not only to more
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complex activity patterns but that could also be directly
related to behavior.

The ability to embody networks fundamentally changes
the research landscape. These models allowed us to see that
networks of very few units are sufficient to control elemen-
tary navigation. Once embodied, the dynamics observed in
the random networks could immediately be assessed in
relation to behavior. Particular dynamics could be seen
as closely related to what we might regard as pathology
in the biological counterpart. Fixed point activity corre-
sponds to immobility, or death. The highly prevalent limit
cycles corresponded to small shakes reminiscent of sei-
zures. The first generation of embodied networks thus dem-
onstrated that: (i) the world alone does not change the
dynamics of these networks, (ii) that synchrony and self-
organization of activity far from being peculiar are highly
probable and possibly even problematic, thereby question-
ing the hope that simple synchrony will account for the
brain’s representational powers, (iii) the probability that a
network will interact with the world by default is vanish-
ingly small.

This is where the findings of Section 3.5 show the rich-
ness and tangible promise of embodied models as com-
pared to the techniques that separate networks from
action. The successful escape from synchrony in these mod-
els can help expand our conceptual grasp of how dynamic
representation takes place in non-synchronized (unbound)
systems.

4.17. Charting epilepsy by searching for intelligent behavior

This paper began by inquiring about the full landscape
of network behaviors. We inquired as to the likelihood that
a network’s activity would die out (settle on a fixed point)
and the likelihood that it would enter and get locked into a
periodic limit cycle. We asked what other sorts of dynamics
networks might exhibit, how these dynamics might relate
to interactions with the world and the role these various
types of dynamics might play in physiological systems.
Most generally, we wondered about the connection between
network structure, network dynamics, and an organism’s
interaction with the world.

The attempt to answer these questions began with gen-
eral experimental observations regarding the ubiquity of
oscillations (Section 3.1) and their worsening under simple
plasticity (Section 3.3). The observations of Section 3.4
showed how certain types of more complex epilepsy-related
phenomena such as interictal paroxysmal events might
arise and signaled the possibility of heterogeneous dynam-
ics. Section 3.5 illustrated how synchronous dynamics can
drive pathology and linked ictal neuronal activity to motor
output. This section also explored ways leading out of the
dominant, purely repetitive, regimes and searched for
networks that could interact with the world. This explora-
tion of network architectures is what was meant by “chart-
ing epilepsy by searching for intelligence in network
space”. The first sections are intended to give a sense for

the vastness of network space—the sheer number of possi-
ble networks and the types of behavior that a random
search might uncover. They also clarified that finding the
limits of these vast zones occupied by fixed points and
limit cycles would require assistance. This is where the
evolution of intelligent behavior helped demarcate the bor-
ders of seizure territory, and directed our search in non-
epileptic space. To find a system that can interact with
the environment is to find a system that has escaped
locked-in periodic cycles (embodied model) or seizures
(biological counterpart).

4.18. Evolving out of epilepsy and into the world

Our ability to actively interface with the world is both a
reflection and direct consequence of internal network
dynamics. A dynamic ailment might manifest itself as a
complete disconnection from the world, or, at the other
extreme, as a system that is entirely driven by the world
and cannot free itself from the effects of external inputs.
In this regard, the embodied behavior of the first random
networks falls within the former type of pathology. Not
one of the naive networks in Section 3.5 accomplished
much beyond freezing or shaking behavior. With the initi-
ation of evolution, the emergence of interaction with the
world became detectable even in early generations with
individuals showing some shaking in a forward direction
and dashes toward arena walls. Within only 14 generations
the evolutionary algorithms had found network structures
that could do something reminiscent of behavior. These
changes in behavior so clearly reflected in fitness measures
(Fig. 8) were sustained by corresponding transformation in
activity dynamics (Fig. 9). This multifaceted shift was gen-
erally from homogeneous narrowband activity to that with
multiple-time scales and/or multi-stability.

The application of a genetic algorithm in Section 3.5
thus not only focused the behavioral search but could
prove to be biologically relevant in helping explore the
means by which evolution and learning find appropriate
solutions in the incredibly large space of possible networks.
Even with this simple task there seemed to be a combina-
tion of changes in both the apparent number of attractors
and spectral characteristics of network activity. Certainly
many of the evolved networks exhibited a move away from
characteristic scales that was pronounced in the random
networks. Similarly, the embodied networks showed how
the activities could shift following a tactile input, suggest-
ing the introduction of new attractors or expansion of
existing basins. It is unclear which of these changes—the
move from synchrony per se or the ability to switch
between multiple attractors—best characterized the evolu-
tionarily induced navigation strategies. An increase in task
complexity and a careful analysis of these attractors could
reveal the tactics the healthy brain employs in its interac-
tion with the world. Autonomous mechanisms of transition
are important in explaining how agents choose, attain
autonomy and are able to avoid lockdown. As such, being
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able to distinguish the size, character, transient nature and
the number of attractors might help elucidate how neural
ensembles perform transitions in the healthy condition.

Understanding the nature of signal heterogeneity and
uncovering the mechanisms for switching between dynam-
ical regimes is also particularly critical for understanding
the pathological conditions and its termination. In genera-
tion 0, the activity was continuous and homogeneous. In
contrast, the evolved system exhibited intermittent and het-
erogeneous patterns. This durational and spectral variabil-
ity is comparable to inter-ictal phenomena in epileptiform
recordings and could be suggestive of the general mecha-
nism involved in pulling out of seizures. Studying these
dynamics in an embodied model could help distinguish
normal from pathological population dynamics. Disambig-
uating normal oscillations from pathology is not a trivial
problem. Sleep signals, alpha waves and ictal discharges
are all highly oscillatory. Are sleep and alpha oscillations
closer to seizures than normal awake recordings? [12]. Per-
haps the difference is one of degrees, for example: (a)
amplitude of activities, (b) number of cells involved, (c)
duration of the state, (d) frequency of firing and (e) syn-
chrony of elements may all be metrics differentiating
healthy from pathological oscillations. In our experi-
ments, measures of activity dynamics varied depending
on whether the agents exhibited movement or were behav-
iorally detached. The observations also suggest that there
may exist more subtle, fundamental and qualitative differ-
ences in dynamics, such as shifts from periodic limit cycles
to close returns that could be critical for the emergence
and stability of intelligent interactive behavior. Here, the
dynamical systems literature’s use of the prefix “unstable”
in “unstable periodic orbits” is somewhat unfortunate; for
although the term may be accurate and descriptive from a
dynamical systems perspective it may be misleading when
applied in the behavioral or cognitive context. It may very
well be that it is these non-limit-cycle oscillating networks
that are the most immune to pathological synchrony, most
robust in the face of ambient noise and the most stable
when considered in the context of cognitive performance
and behavior in the world. It is for this reason we chose
to categorize such networks as exhibiting “close returns”
rather than the more broadly used ‘‘unstable periodic
orbits”.

4.19. The role of world input and the consequences of
disconnection and connection

Are the changes in behavior seen in the embodied net-
works really due to a change in architecture or are the
dynamics simply a consequence of the addition of world
input? The change in fitness values and observed behavior
seen over evolution (Section 3.5) demonstrated that
although the environment may be necessary it is certainly
not sufficient. The mere linking of networks to sensors
and actuators did not miraculously ameliorate network
periodicity or result in intelligent behavior. Random net-

works remained pathological despite connectivity. The evo-
lutionary transformation implied that the escape from
epilepsy required not only a connection with the environ-
ment but also the introduction of network structures that
allow for dynamic processing of the input.

A strong predisposition to fall into periodic activity
clearly interfered with a meaningful connection to the envi-
ronment. However, a causal connection may also exist in
the reverse direction. That is, it seems reasonable to postu-
late that the degree of connection to the environment can
have an effect on periodicity. Certainly, there is evidence
supporting the idea that decreasing connection with the
environment can correlate with an increase in the risk of
seizures. After all, certain types of seizures can increase
during sleep [12] and though the causal route is unclear,
there are links between certain forms of autism and seizures
[58,75,76]. As such, it is important to establish the role that
impaired connections to the environment has in epilepsy
and vice versa. The connection to the world studied in
the embodied networks in Section 3.5 thus goes beyond
studying evolutionary considerations and offers new ways
to explore the relation between connections with the world
and resultant dynamics. Rather than depriving a system of
connectivity and testing for loss of stability (e.g., as is done
in in-vitro slice models), we can now proceed by increasing
a system’s connectivity to the world and exploring robust-
ness directly via behavioral responsiveness.

4.20. Beyond evolutionary perspectives: learning and
self-organization

Caution should be taken to not over-interpret the appli-
cation of a genetic algorithm and the analogy to biological
evolution. We applied the technique primarily as a way to
explore network space. Undoubtedly, the computational
version shares important features with the mechanisms of
biological evolution but in many aspects it is far removed
from the genetic processes that occur in organic systems.
For one thing, it is unlikely that biological genomes code
detailed network structure directly. Secondly, even by
computational modeling standards the approach was
particularly elementary. Although we initially explored
mechanisms such as crossover as well as a range of fitness
functions, for simplicity and speed we chose a much more
targeted and limited evolutionary algorithm. Our concern
here was not to explore evolutionary algorithms but rather
to quickly find a way to connect network architecture,
activity dynamics and behavior in a manner that would
be transparent and straightforward. Extending the genetic
algorithm to consider more complex coding schemes for
network structure might enrich the search and help auto-
mate the promotion or identification of specific architec-
tural elements [68]. More sophisticated coding might also
make the analogy with biological evolution more precise.

Nonetheless, being overly concerned with relating the
genetic algorithm of Section 3.5 to the details of natural
counterpart might overshadow important general princi-
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ples. Specifically, the genetic algorithm at hand could easily
be recast as a learning algorithm. The genetic search for
behavior only relied on rewarding the most beneficial of
the random weight changes. There is no reason to believe
that the process might not be successfully repeated so that
weights are changed within individuals. Movement and
collision feedback could act as reward and discouragement
in an online learning algorithm. Comparison and integra-
tion of learned schemes and corresponding network struc-
tures might be implemented in a learning algorithm in a
manner analogous to the genetic crossover. Moreover,
there is nothing to preclude the simultancous running of
both forms of weight modification; learning and genetic
algorithms are not mutually exclusive. Although in most
of our experiments the weights for a given network were
frozen and changed only between generations, the synergis-
tic combination of evolution and appropriate learning
algorithm might result in the Baldwin effect [2], speeding
up the search or even finding new solutions [2,25].

Most importantly, focusing exclusively on competitive
evolution could have more profound limitations. In think-
ing in evolutionary fitness terms we may fail to consider
distinct factors complementary, orthogonal and even
opposite to Darwinian mechanisms. Certainly, the develop-
ment of behavior in our models suggests that a Darwinian-
like process can promote an escape from overly ordered
dynamics. However, the very presence of high order is
intriguing. It suggests that we must keep in mind issues
of symmetry and symmetry breaking so fundamental to
life. This perspective suggests that even random network
structures have high ordering coefficients and that com-
plexity and self-organization (rather than just competition
among individuals) plays an important role in the rise (and
demise) of symmetrical patterns in pathology and action
[30,31].

4.21. Clinical implications and potential therapies

Thinking beyond genetic algorithms is particularly
important for interpreting how synchrony in these models
might relate to the susceptibility of certain individuals to
seizures. Focusing on learning, development and self-orga-
nization could also be critical to extending these findings to
potential clinical treatment. By considering the shift from
monolithically oscillatory systems to complex dynamics
as a process that can be driven by learning and that can
occur within the life cycle of an organism, immediately sug-
gests the connection between these models and the biolog-
ical evidence [6,27]. By thinking beyond evolutionary time
scales of millions of years to the individual life cycle, the
prospect of epilepsy as default can be seen as a challenge
that every neural system must—and can—overcome.
Accordingly, if the process is revisited in normal develop-
ment it follows that the problem can be solved within a sin-
gle network and in short time frames.

If individual developing networks can rearrange them-
selves quickly such that they move out of the epileptic

regions of network space and into behavioral domains
there is hope that the process can be retriggered later in life
and replicated in clinical application. To this end, it is
important to consider what is taking place in the embodied
model. Although the developmental literature focuses on
the GABAergic system and the balance between inhibitory
and excitatory elements [6,27], the embodied model sug-
gests that considering issues of self-organization and more
complex architectural factors will be critical to understand-
ing how the developing systems escape synchrony. Simply
turning up inhibition may not be sufficient and might even
be counter-productive. Are there endogenous mechanisms
that are sensitive to quiescence (fixed points) and oscilla-
tions (periodic limit cycles)? Are there intrinsic biological
mechanisms that act as dynamical fitness functions and
change connectivity so as to encourage more complex
activity? What role do major structural changes brought
on by neurogenesis and cell death play in epileptogenesis
and its reversal [64]? How does the susceptibility to seizure
dynamics relate to behavioral activity [43,62,49,507]?

One way of studying the mechanisms that cause network
structures to revert and become vulnerable to synchronous
periodicity is by introducing environmental conditions that
trigger these changes, thereby bringing on epilepsy in the
post-developmental network. This is precisely the approach
taken by artificially inducing seizures by kindling [19,40,
56,57,43,64]. Conversely, a complementary approach to
studying these mechanisms is by attempting to introduce
normal activity in networks that are by default overtaken
by synchrony. This is the approach taken in the evolution-
ary modeling sections presented in this paper. The implicit
assumption is that there are structural generalities underly-
ing oscillations to be found in random networks and
that identifying these patterns will eventually elucidate the
corresponding mechanisms that affect connectivity and
increase vulnerability in the biological systems [49,50].
Moreover, if genetic or environmental factors can result
in changes to connectivity in a particular direction perhaps
there are treatments analogous to the network alterations
effected in Section 3.5 that can pull systems out of the epi-
leptic regions and back to behavioral clusters. Even if the
initial architecture is established by genetic predisposition
or noxious events, there is nothing that precludes the possi-
bility of an environmental cure. For example, learning
mechanisms in conjunction with the appropriate stimuli
could theoretically accomplish the changes observed in
the embodied models.

The connection to the biological case is conjectural and
it would be foolish and dangerous to proceed to any clini-
cal conclusions based on these preliminary explorations.
The point here is not to forward immediate therapies but
to suggest ways of exploring connections between net-
work architecture and seizures that would be impossible
by other means. Mapping out detailed network architec-
tures, let alone the subtle connectivity changes, in biologi-
cal preparations is extremely difficult. Most computer
models that focus on intrinsic cell properties do not explore
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connectivity parameters and so also cannot begin to test
how network structure might drive seizures. Even those
computational models that do consider connectivity often
neglect the connection to behavior. The embodied recur-
rent network approach presented in this paper overcomes
these obstacles by both focusing on network structure
and by providing a way to clarify whether observed
dynamics or suggested therapies will result in intelligent
behavior (computational viability) or pathological condi-
tions (limit cycles or fixed point regions). The evolution
out of periodic synchronous activity in the models is anal-
ogous to known quenching phenomena [85] with the added
advantage that it offers a practical way of exploring the
effects of environment on connectivity and developing ways
of implementing such changes in the adult brain by tapping
into learning mechanisms.

4.22. Cure-oriented modeling, cybernetics and epilepsy

Biological models generally focus on replicating pathol-
ogy in the hopes of later finding a cure. Such modeling can
become dominated by capturing the relevant pathology
rather than escaping from the condition. The embodied
modeling presented here focuses on increased interaction
with the world and so has a fundamentally different out-
look. Instead of modeling pathology and applying control,
we focused on modeling the escape from pathology and
how this might be assessed in the context of the world
and behavior.

It is no coincidence that some of the founders of cyber-
netics had a direct interest in electroencephalography and
epilepsy [80-82,86]. As the prototypical dynamical disease
these pioneers surely knew that condition might affect
any constructed system and might have hoped that their
research would alleviate seizures in humans. However, it
is worth noting that cybernetics—by definition—is also
dominated by notions of control. This perspective may
have tainted decades of robotic theory and possibly the
neurosciences. The cybernetic outlook is often one in which
periodic activity and computation by synchrony seems con-
trolled and an appropriate design goal. Yet, the observa-
tions of this paper suggest that the fundamental objective
of organic systems might be precisely the opposite; that
the escape from the all-encompassing control of synchrony
is the true challenge.

This study thus suggests that creative cybernetic systems
are likely to face the same challenges as their biological
counterparts. In the past, the connection between robots
and medicine has mostly been limited to applications such
as assistance in navigation of surgical instruments. Here we
explore a more direct and profound connection between
robots and pathology. That is, that neurally-inspired syn-
thetic autonomous agents may be just as prone to the prob-
lem of seizures. The human need to generate activity that
supports interactions with the environment while ensuring
autonomy thus similarly extends to these systems. As such,
any solution found through these models might go beyond

humans and epilepsy and might apply to embodied compu-
tational systems.

4.23. Conclusions, open questions and future directions

A central aim of the preceding Ladislav Tauc Conference
in Neurobiology and these proceedings was to explore neu-
ronal assemblies and cybernetics. In our approach to the
question of how cell assemblies interface with the world
we attempted to ask the most basic of questions with the
most abstract neural models. This paper focuses on the rela-
tion between structure, activity, and behavior. Rather than
focusing on a particular structure it assumes only nonlinear
recurrence [28] and attempts to provide ways of searching
these large spaces for structures that can underlie healthy
activity and relate complex dynamics to behavior in embod-
ied systems. We suggested that the charting of this space can
be accomplished through: (1) random searches of network
structures, (2) categorization via dynamics, (3) subcategori-
zation through exploration of found complex dynamical
sets, (4) embodied modeling and searching for intelligent
behavior using learning or evolutionary algorithms.

This line of research leads to many open questions.
Already mentioned is the need to explore learning algo-
rithms. We need to establish how distributions of dynamic
categories vary with network size and various statistical
changes in weight distributions. The full effects of noise
have yet to be explored in detail. The categorization and
subcategorization of networks could be accomplished
through a range of dynamical tests. The embodied model-
ing could include more complex tasks, larger networks,
spatially defined structures, time delayed connectivity,
asynchronous updates, more sophisticated genetic coding
schemes, more elaborate evolutionary algorithms and the
addition of parallel learning. All of these might help iden-
tify universal elements in architecture that underlie patho-
logical vs. healthy behavior. Analysis of the random and
evolved network structure would benefit from the various
tools being developed by current network theory [1,3,41,
44,68,71,83].

Notwithstanding future modifications, the exploration
of even these simple recurrent neural networks and embod-
ied models provided a way to study the theoretical under-
pinning of movement disorders and the significance of
the environment in the initiation and amelioration of sei-
zures. This paper is fundamentally a proof-of-concept that
such searches can yield results both in uncovering new
mechanisms for epileptic activity (Section 3.4) and generat-
ing dynamical non-stationary and non-limit cycle networks
that can support persistent activity while interacting with
the world (Section 3.5). The resultant population may thus
afford a view of the architectural principles demarcating
healthy biological networks from the pathological. What
is interesting and often neglected in autonomous agent
modeling is the analysis of the dynamics of the underlying
neural systems, especially at the early stages and through
development. This conjoining of dynamical systems analy-
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sis and studying development in embodied models may
help provide understanding of the progressive escape from
pathology in human as well as robotic systems.

4.24. Closing remarks: robots, epilepsy and the ethics
of autonomous agents

The connection between epilepsy and artificial life is at
least as old as the very coining of the term “robot” [9]. A
key scene in “R.U.R.” (Rossum’s Universal Robots), the
1923 allegorical play by Karel Capek that originated the
term, has a central human character, Helena, witnessing
a robot having a seizure. The Psychologist-in-Chief dis-
misses this activity: “Occasionally they seem somehow to
go off their heads. Something like epilepsy, you know. We
call it Robot’s cramp ... It’s evidently some breakdown in
the mechanism.” The Chief Engineer and Head of the Phys-
iological Department concur. The General Manager
asserts: “A4 flaw in the works. Il have to be removed.”
But Helena——clearly conveying Capek’s sympathies and
outlook—disagrees and cautions that this supposed flaw
may be an important first indication of life: ““Perhaps it’s
Jjust a sign that there’s a struggle. Oh, if you could infuse
them with it.” [9].

Capek’s fictional, symbolic, observations are prescient
cautions worth heeding on many levels. It would be simple
to presume that the initial seizure-like interaction of our
models with the environment are nothing but pathol-
ogy—but it would be much more accurate and astute to
recognize that these reverberations are also the basis for
interaction with the world. The evolved model’s ability to
interact with the environment is premised on the initial
existence of reverberations which are evolved into interac-
tive behavior. Those initial artificial reverberations—as
perhaps is the case with biological seizures—may be viewed
as the transitional territory between fixed-point, comatose
or dead systems at equilibrium and systems that can
actively but independently interact with the world.

It is notable that social and ethical issues relating to
cyborgs constituted another important theme of the pres-
ent conference. In its most universal reading, R.U.R. is a
cautionary tale outlining the cost of ignoring the freedom
of autonomous systems and the responsibility associated
with introducing such systems into the world. This message
should not be taken lightly. The hope is that such research
will help cure epilepsy in humans just as much as it might
help alleviate pathology and ensure autonomy for any new
denizens of this world.
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